RESUMO
Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.
Assuntos
Bases de Dados Genéticas , Eucariotos , Fungos , Genoma , Animais , Códon , Eucariotos/genética , Fungos/genética , Plantas/genéticaRESUMO
Cu/Zn superoxide dismutase 1 (SOD1) has a high propensity to misfold and form abnormal aggregates when it is subjected to oxidative stress or carries mutations associated with amyotrophic lateral sclerosis. However, the transition from functional soluble SOD1 protein to aggregated SOD1 protein is not completely clear. Here, we propose that liquid-liquid phase separation (LLPS) represents a biophysical process that converts soluble SOD1 into aggregated SOD1. We determined that SOD1 undergoes LLPS in vitro and cells under oxidative stress. Abnormal oxidation of SOD1 induces maturation of droplets formed by LLPS, eventually leading to protein aggregation and fibrosis, and involves residues Cys111 and Trp32. Additionally, we found that pathological mutations in SOD1 associated with ALS alter the morphology and material state of the droplets and promote the transformation of SOD1 to solid-like oligomers which are toxic to nerve cells. Furthermore, the fibrous aggregates formed by both pathways have a concentration-dependent toxicity effect on nerve cells. Thus, these combined results strongly indicate that LLPS may play a major role in pathological SOD1 aggregation, contributing to pathogenesis in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Mutação , Dobramento de Proteína , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Transição de FaseRESUMO
Ciliophora, an exceptionally diverse lineage of unicellular eukaryotes, exhibits a remarkable range of species richness across classes in the ciliate Tree of Life. In this study, we have acquired transcriptome and genome data from 40 representative species in seven ciliate classes. Utilizing 247 genes and 105 taxa, we devised a comprehensive phylogenomic tree for Ciliophora, encompassing over 60 % of orders and constituting the most extensive dataset of ciliate species to date. We established a robust phylogenetic framework that encompasses ambiguous taxa and the major classes within the phylum. Our findings support the monophyly of each of two subphyla (Postciliodesmatophora and Intramacronucleata), along with three subclades (Protocruzia, CONTHREEP, and SAPML) nested within Intramacronucleata, and elucidate evolutionary positions among the major classes within the phylum. Drawing on the robust ciliate Tree of Life and three constraints, we estimated the radiation of Ciliophora around 1175 Ma during the middle of the Proterozoic Eon, and most of the ciliate classes diverged from their sister lineage during the latter half of this period. Additionally, based on the time-calibrated tree and species richness pattern, we investigated net diversification rates of Ciliophora and its classes. The global net diversification rate for Ciliophora was estimated at 0.004979 species/Ma. Heterogeneity in net diversification rates was evident at the class level, with faster rates observed in Oligohymenophorea and Spirotrichea than other classes within the subclades CONTHREEP and SAPML, respectively. Notably, our analysis suggests that variations in net diversification rates, rather than clade ages, appear to contribute to the differences in species richness in Ciliophora at the class level.
Assuntos
Cilióforos , Filogenia , Cilióforos/genética , Cilióforos/classificação , Transcriptoma , Evolução Molecular , Especiação GenéticaRESUMO
Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments can benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.
Assuntos
Rios , Animais , Tibet , Zooplâncton/fisiologia , Zooplâncton/classificação , Invertebrados/fisiologia , Camada de Gelo , Peixes/fisiologia , Ecossistema , Organismos Aquáticos , Biota , Fitoplâncton/fisiologia , Biodiversidade , Distribuição AnimalRESUMO
The Peritrichia is a speciose and morphologically distinctive assemblage of ciliated protists that was first observed by Antonie van Leeuwenhoek over 340 years ago. In the last two decades, the phylogenetic relationships of this group have been increasingly debated as morphological and molecular analyses have generated contrasting conclusions, mainly owing to limited sampling. In the present study, we performed expanded phylogenetic analyses of 152 sessilid peritrichs collected from 14 different provinces of China and 141 SSU rDNA peritrich sequences from GenBank. The results of the analyses revealed new divergent relationships between and within major clades that challenge the morphological classification of this group including, (1) the recovery of four major phylogenetically divergent clades in the monophyletic order Sessilida, (2) aboral structures such as the stalk and spasmoneme were evolutionary labile, (3) the stalk or/and spasmoneme was lost in each divergent clade indicating that parallel evolution occurred in sessilid peritrichs and (4) the life cycle and habit drive the diversity of aboral structures as well as diversification and evolution in peritrichs.
Assuntos
Cilióforos , Oligoimenóforos , Filogenia , DNA de Protozoário/genética , DNA Ribossômico/genéticaRESUMO
BACKGROUND: Recurrence and chemoresistance constitute the leading cause of death in colorectal cancer (CRC). Thus, it is of great significance to clarify the underlying mechanisms and identify predictors for tailoring adjuvant chemotherapy to improve the outcome of CRC. METHODS: By screening differentially expressed genes (DEGs), constructing random forest classification and ranking the importance of DEGs, we identified membrane associated guanylate kinase, WW and PDZ domain containing 3 (MAGI3) as an important gene in CRC recurrence. Immunohistochemical and western blot assays were employed to further detect MAGI3 expression in CRC tissues and cell lines. Cell counting kit-8, plate colony formation, flow cytometry, sub-cutaneous injection and azoxymethane plus dextran sulfate sodium induced mice CRC assays were employed to explore the effects of MAGI3 on proliferation, growth, cell cycle, apoptosis, xenograft formation and chemotherapy resistance of CRC. The underlying molecular mechanisms were further investigated through gene set enrichment analysis, quantitative real-time PCR, western blot, co-immunoprecipitation, ubiquitination, GST fusion protein pull-down and immunohistochemical staining assays. RESULTS: Our results showed that dysregulated low level of MAGI3 was correlated with recurrence and poor prognosis of CRC. MAGI3 was identified as a novel substrate-binding subunit of SKP1-Cullin E3 ligase to recognize c-Myc, and process c-Myc ubiquitination and degradation. Expression of MAGI3 in CRC cells inhibited cell growth, promoted apoptosis and chemosensitivity to fluoropyrimidine-based chemotherapy by suppressing activation of c-Myc in vitro and in vivo. In clinic, the stage II/III CRC patients with MAGI3-high had a significantly good recurrence-free survival (~ 80%, 5-year), and were not necessary for further adjuvant chemotherapy. The patients with MAGI3-medium had a robustly good response rate or recurrence-free survival with fluoropyrimidine-based chemotherapy, and were recommended to undergo fluoropyrimidine-based adjuvant chemotherapy. CONCLUSIONS: MAGI3 is a novel E3 ubiquitin ligase by degradation of c-Myc to regulate CRC development and may act as a potential predictor of adjuvant chemotherapy for CRC patients.
Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
In this work, a novel integrated dielectric barrier discharge (IDBD) reactor coupled to an electrothermal vaporizer (ETV) was established for arsenic determination. It is for the first time gas-phase enrichment (GPE) was fulfilled based on the hyphenation of ETV and DBD. The mechanisms of evolution of arsenic atomic and molecular species during vaporization, transportation, trapping, and release processes were investigated via X-ray photoelectron spectroscopy (XPS) and other approaches. Tentative mechanisms were deduced as follows: the newly designed DBD atomizer (DBDA) tube upstream to the air inlet fulfills the atomization of arsenic nanoparticles in vaporized aerosol, leading to free arsenic atoms that are indispensable for forming arsenic oxides; the DBD trap (DBDT) tube traps arsenic oxides under an O2-domininating atmosphere and then releases arsenic atoms under H2-dominating atmospheres. In essence, this process is a physical-chemical process rather than an electrostatic particle deposition. Such a trap and release sequence separates matrix interference and enhances analytical sensitivity. Under the optimized conditions, the method detection limit (LOD) was 0.04 mg/kg and the relative standard deviations (RSDs) were within 6% for As standard solution and real seafood samples, indicating adequate analytical sensitivity and precision. The mean spiked recoveries for laver, kelp, and Undaria pinnatifida samples were 95-110%, and the results of the certified reference materials (CRMs) were consistent with certified values. This ETV-DBD preconcentration scheme is easy and green and has low cost for As analysis in seafood samples. DBD was proved a novel ETV transportation enhancement and preconcentration technique for arsenic, revealing its potential in rapid arsenic analysis based on direct solid sampling ETV instrumentation.
Assuntos
Arsênio , Espectrofotometria Atômica , VolatilizaçãoRESUMO
BACKGROUND: The treatment strategies for Myelodysplastic Syndromes (MDS) are usually based on the risk stratification system. However, few risk signatures which integrate the revised international prognostic scoring system (IPSS-R) with gene mutations can be easily applied in the real world. METHODS: The training cohort of 63 MDS patients was conducted at Zhongda Hospital of Southeast University from January 2013 to April 2020. The validation cohort of 141 MDS patients was obtained from GSE129828. The mutation scoring system was based on the number of mutations and a unique favorable prognostic factor, which is SF3B1 mutation. Univariate Cox, multivariate Cox, and LASSO regression analyses were used to determine the significant factors that influenced the overall survival. The receiver operating characteristic curve (ROC) was used to evaluate the efficiency of the prognostic model. RESULTS: A novel risk scoring system we named "mutation combined with revised international prognostic scoring system (MIPSS-R)" was developed based on the results derived from multivariate analysis which assigned points to the IPSS-R and the mutation scores according to their relative statistical weight. Based on the quintile of the new scores, patients were divided into five risk levels. The Kaplan-Meier curves showed the superiority of MIPSS-R in separating patients from different groups, comparing with IPSS-R both in the training cohort (p = 1.71e-08 vs. p = 1.363e-04) and validation cohort (p = 1.788e-04 vs. p = 2.757e-03). The area under the ROC of MIPSS-R was 0.79 in the training cohort and 0.62 in the validation cohort. The retrospective analysis of our house patients showed that the risk levels of 57.41% of patients would adjust according to MIPSS-R. After changing risk levels, 38.71% of patients would benefit from treatment strategies that MIPSS-R recommends. CONCLUSION: A mutation scoring system was conducted based on the number of mutations and a unique favorable prognostic factor. MIPSS-R, the novel integral risk stratification system was developed by integrating IPSS-R and the mutation scores, which is more effective on prognosis and treatment guidance for MDS patients.
Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Genes p53 , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/genética , Prognóstico , Proteínas Proto-Oncogênicas/genética , Fatores de Processamento de RNA/genética , Análise de Regressão , Proteínas Repressoras/genética , Medição de Risco/métodos , Fatores de Processamento de Serina-Arginina/genéticaRESUMO
BACKGROUND: Phosphorus (P) is an essential mineral nutrient for crop growth and development. Much remains unknown regarding the content and distribution of P forms in different soil aggregates as affected by tillage practices. A 3-year field experiment was conducted to investigate the effects of no-tillage (NT), rotary tillage (RT), subsoiling (SS), and deep tillage (DT) on soil aggregate distribution pattern, aggregate-associated P content, and to understand the conversion trend. RESULTS: Tillage has the potential to accelerate the processes in transforming macro-aggregates (> 0.25 mm) into micro-aggregates (< 0.25 mm). Greatest aggregate stability was attained under RT. Total phosphorus (TP) and available phosphorus (AP) under NT were increased by 21.1-82.0% in contrast to other tillage treatments. The NT had high content in inorganic phosphorus (IP), aluminum phosphorus (Al-P), and iron phosphorus (Fe-P) with 416.7, 107.9, and 99.1 mg·kg-1 on average, respectively. Aggregates with a size dimension of < 2 mm were more sensitive than other sizes of aggregates. IP was evenly distributed throughout all aggregates, ranging from 336.3 to 430.6 mg kg-1 . No differences in organic phosphorus (OP) were found in all tillage treatments, while NT promoted the transformation of labile OP to IP. The AP and OP were generally more abundant in aggregates of 2 to 0.25 mm and < 0.25 mm. CONCLUSION: Short-term NT can improve soil structure and increase P reserves, thus, enhancing the conversion of P from being scarce to available. © 2021 Society of Chemical Industry.
Assuntos
Agricultura/métodos , Fósforo/análise , Solo/química , Alumínio/análise , China , Fertilizantes/análiseRESUMO
BACKGROUND: We used bioinformatic tools to dichotomize 157 non-M3 AML patients from the TCGA dataset based on the presence or absence of TP53 mutations, and screened out a key gene related to TP53 mutation for future analysis. METHODS: DEGs were analyzed by R package "DESeq2" and then run GSEA, GO enrichment, KEGG pathway and PPI network. Hub genes were selected out according to MCC. Log-rank (Mantel-Cox) test was used for survival analysis. Mann-Whitney U's nonparametric t test and Fisher's exact test was used for continuous and categorical variables respectively. p value< 0.05 was considered to be statistical significance. RESULTS: TNFRSF4 was final screened out as a key gene. Besides TP53 mutation (p = 0.0118), high TNFRSF4 was also associated with FLT3 mutation (p = 0.0102) and NPM1 mutation (p = 0.0024). Elevated TNFRSF4 was significantly related with intermediate (p = 0.0004) and poor (p = 0.0011) risk stratification as well as relapse statute (p = 0.0099). Patients with elevated TNFRSF4 expression had significantly shorter overall survival (median survival: 2.35 months vs. 21 months, p < 0.0001). Based on our clinical center data, TNFRSF4 expression was significantly higher in non-M3 AML patients than HDs (p = 0.0377) and MDS patients (EB-1, 2; p = 0.0017). CONCLUSIONS: Elevated TNFRSF4 expression was associated with TP53, FLT3 and NPM1 mutation as well as poor clinical outcome. TNFRSF4 expression was significantly higher in non-M3 AML patients than HDs and MDS (EB-1, 2) patients. TNFRSF4 is need for future functional and mechanistic studies to investigate the role in non-M3 AML.
RESUMO
HPV16 is the predominant type of HPV causing invasive cervical cancer. However, the underlying molecular mechanism of the unparalleled carcinogenic power of HPV16 compared to other types of high-risk (HR)-HPV including HPV18 remains elusive. The PDZ binding motif (PBM) of high-risk HPV E6 plays an important role in neoplasia and progression of cervical cancer. HPV16 E6 rather than HPV18 E6, interacted with NHERF1 by its PBM region, and induced degradation of NHERF1. NHERF1 retarded the assembly of cytoskeleton by downregulation of ACTN4, thereby inhibited the migration and invasion of cervical cancer cells in both cell and mouse model. HPV16 E6 was confirmed to enhance actin polymerization with increased ACTN4 level by downregulation of NHERF1, and result in enhanced migration and invasion of cervical cancer cells. GSEA analysis of cervical cancer specimens also showed that HPV16 E6 rather than HPV18 E6, was significantly associated with actin cytoskeleton assembly. That downregulation of NHERF1 by HPV16 E6 promoted cytoskeleton assembly and cell invasion, was an important cause in cervical cancer carcinogenesis. These findings provided the differential mechanism between HPV16 E6 and HPV18 E6 in the development and progression of cervical cancer, which may partially explain the differences of carcinogenic power between these two types of HR-HPVs.
Assuntos
Actinina/metabolismo , Papillomavirus Humano 16/patogenicidade , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Neoplasias do Colo do Útero/virologia , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidade , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Proteólise , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismoRESUMO
Capon is a ligand protein of nitric oxide synthase 1. Recently, studies have shown that Capon is involved in the development of tumors. It is independent of the regulation of nitric oxide synthase 1 in this process. At the same time, studies have found that nitric oxide synthase 1 is expressed in multiple myeloma, but its role in the development and progression of myeloma remains unclear. In this study, we found that there was a different expression of Capon between the normal multiple myeloma cells and the adherent multiple myeloma cells. In the process of myeloma cell proliferation, the reduced expression of Capon reduces the arrest of the cell cycle in the G1 phase and promotes the proliferation of myeloma cells. Cell adhesion-mediated drug resistance is one of the most important factors, which affect the chemotherapy effect of multiple myeloma. If the expression of Capon is decreased, myeloma cells are adhered to fibronectin or bone marrow stromal cells (bone marrow mesenchymal stem cells). In addition, the sensitivity of the cell line to chemotherapeutic agents was reduced after silencing Capon in the myeloma cell line which was adhered to bone marrow mesenchymal stem cells. We also found that reduced expression of Capon resulted in the activation of the AKT signaling pathway. In conclusion, these results may be helpful in studying the role of Capon in multiple myeloma.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fibronectinas/genética , Mieloma Múltiplo/tratamento farmacológico , Antineoplásicos/administração & dosagem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Adesão Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Óxido Nítrico Sintase Tipo I/genética , Proteína Oncogênica v-akt/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
OBJECTIVE: Parkinson's disease (PD) is increasingly recognized for its non-motor symptoms, among which emotional disturbances and sleep disorders frequently co-occur. The commonality of neuroanatomical underpinnings for these symptoms is not fully understood. This study is intended to investigate the differences in gray matter volume (GMV) between PD patients with anxiety (A-PD) and those without anxiety (NA-PD). Additionally, it seeks to uncover the interplay between GMV variations and the manifestations of anxiety and sleep quality. METHODS: A total of 37 A-PD patients, 43 NA-PD patients, and 36 healthy controls (HCs) were recruited, all of whom underwent voxel-based morphometry (VBM) analysis. Group differences in GMV were assessed using analysis of covariance (ANCOVA). Partial correlation between GMV, anxiety symptom, and sleep quality were analyzed. Mediation analysis explored the mediating role of the volume of GMV-distinct brain regions on the relationship between sleep quality and anxiety within the PD patient cohort. RESULTS: A-PD patients showed significantly lower GMV in the fusiform gyrus (FG) and right inferior temporal gyrus (ITG) compared to HCs and NA-PD patients. GMV in these regions correlated negatively with Hamilton Anxiety Rating Scale (HAMA) scores (right ITG: r = -0.690, p < 0.001; left FG: r = -0.509, p < 0.001; right FG: r = -0.576, p < 0.001) and positively with sleep quality in PD patients (right ITG: r = 0.592, p < 0.001; left FG: r = 0.356, p = 0.001; right FG: r = 0.470, p < 0.001). Mediation analysis revealed that GMV in the FG and right ITG mediated the relationship between sleep quality and anxiety symptoms, with substantial effect sizes accounted for by the right ITG (25.74%) and FG (left: 11.90%, right: 15.59%). CONCLUSION: This study has shed further light on the relationship between sleep disturbances and anxiety symptoms in PD patients. Given the pivotal roles of the FG and the ITG in facial recognition and the recognition of emotion-related facial expressions, our findings indicate that compromised sleep quality, under the pathological conditions of PD, may exacerbate the reduction in GMV within these regions, impairing the recognition of emotional facial expressions and thereby intensifying anxiety symptoms.
Assuntos
Ansiedade , Substância Cinzenta , Imageamento por Ressonância Magnética , Doença de Parkinson , Qualidade do Sono , Humanos , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Ansiedade/patologia , Ansiedade/psicologia , Ansiedade/diagnóstico por imagem , Idoso , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/psicologia , Tamanho do ÓrgãoRESUMO
The effects of wind erosion, one of the crucial causes of soil desertification in the world, on the terrestrial ecosystem are well known. However, ecosystem responses regarding soil microbial carbon metabolism to sand deposition caused by wind erosion, a crucial driver of biogeochemical cycles, remain largely unclear. In this study, we collected soil samples from typical aeolian deposition farmland in the Songnen Plain of China to evaluate the effects of sand deposition on soil properties, microbial communities, and carbon metabolism function. We also determined the reads number of carbon metabolism-related genes by high-throughput sequencing technologies and evaluated the association between sand deposition and them. The results showed that long-term sand deposition resulted in soil infertile, roughness, and dryness. The impacts of sand deposition on topsoil were more severe than on deep soil. The diversity of soil microbial communities was significantly reduced due to sand deposition. The relative abundances of Nitrobacteraceae, Burkholderiaceae, and Rhodanobacteraceae belonging to α-Proteobacteria significantly decreased, while the relative abundances of Streptomycetaceae and Geodermatophilaceae belonging to Actinobacteria increased. The results of the metagenomic analysis showed that the gene abundances of carbohydrate metabolism and carbohydrate-activity enzyme (GH and CBM) significantly decreased with the increase of sand deposition amount. The changes in soil microbial community structure and carbon metabolism decreased soil carbon emissions and carbon cycling in aeolian deposition farmland, which may be the essential reasons for land degradation in aeolian deposition farmland.
Assuntos
Carbono , Microbiologia do Solo , Solo , Carbono/metabolismo , Carbono/análise , China , Solo/química , Ecossistema , Fazendas , Microbiota , Areia/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , VentoRESUMO
Exploring the physical fractions of organic carbon and influencing mechanisms in grassland, forest, and farmland soils in wind erosion area can provide scientific basis for carbon sequestration, land utilization, wind prevention measure making, and fertility restoration of sloping farmland in the region. We examined the differentiation of aggregate organic carbon and density fractionation organic carbon in 0-15 cm soil layer across grassland, forest, and sloping farmland with 350 m long and 5° slope gradient in the wind erosion area of Meilisi District, Qiqihar, Heilongjiang, as well as the sloping farmland in the downhill section, middle section, and uphill section with every 100 m apart from the bottom to the top. The results showed that soil aggregates >2 mm were all destroyed across grassland, forest, and farmland soils, while the percentage of aggregates <0.053 mm was significantly higher than that of other sizes. The percentage of various soil aggregates, organic carbon content from density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in farmland were significantly lower than that in grassland and forest soils. Soil aggregates in the uphill section of farmland were completely destroyed, and organic carbon content in various size aggregates and density fractionations gradually decreased with increasing slope. The proportion of organic carbon in the heavy fraction aggregates decreased, but that in light fraction aggregates increased gradually. Soil organic carbon and available potassium were key factors affecting aggregate stability, aggregate organic carbon content, and organic carbon content in density fractionations, while the loss of organic carbon in aggregate led to a decrease in aggregate stability. In summary, compared with grassland and forest soils, the stability of soil aggregates, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in heavy fraction aggregates in farmland all decreased in the wind erosion area of Northeast China. With the increases of slope, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in sloping farmland all decreased. Planting trees, conserving and expanding grassland area, and increasing the application of organic materials in sloping farmland in wind erosion area are effective approaches to stabilize and increase carbon storage, improve soil structure, and enhance soil quality.
Assuntos
Carbono , Compostos Orgânicos , Solo , Vento , China , Carbono/análise , Carbono/química , Solo/química , Compostos Orgânicos/análise , Produtos Agrícolas/crescimento & desenvolvimento , Pradaria , Erosão do Solo , Florestas , Árvores/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais , EcossistemaRESUMO
BACKGROUND: Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS: A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS: In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS: From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.
Assuntos
Córtex Cerebral , Dor Crônica , Dor Lombar , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Dor Lombar/diagnóstico por imagem , Dor Lombar/patologia , Adulto , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Dor Crônica/diagnóstico por imagem , Dor Crônica/patologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologiaRESUMO
Background: Neuroimaging studies have suggested a pivotal role for the amygdala involvement in chronic low back pain (CLBP). However, the relationship between the amygdala subregions and CLBP has not yet been delineated. This study aimed to analyze whether the amygdala subregions were linked to the development of CLBP. Methods: A total of 45 patients with CLBP and 45 healthy controls (HCs) were included in this study. All subjects were asked to complete a three-dimensional T1-weighted magnetic resonance imaging (3D-T1 MRI) scan. FreeSurfer 7.3.2 was applied to preprocess the structural MRI images and segment the amygdala into nine subregions. Afterwards, comparisons were made between the two groups in terms of the volumes of the amygdala subregions. Correlation analysis is utilized to examine the relationship between the amygdala subregion and the scale scores, as well as the pain duration in patients with CLBP. Additionally, logistic regression was used to explore the risk of the amygdala and its subregions for CLBP. Results: In comparison to HCs, patients with CLBP exhibited a significant enlargement of the left central nucleus (Ce) and left cortical nucleus (Co). Furthermore, the increased volume of the left Ce was associated with a higher risk of CLBP. Conclusion: Our study suggests that the left Ce and left Co may be involved in the pathophysiological processes of CLBP. Moreover, the volume of the left Ce may be a biomarker for detecting the risk of CLBP.
RESUMO
Eukaryotic cells depend on dynamic changes in shape to fulfill a wide range of cellular functions, maintain essential biological processes, and regulate cellular behavior. The single-celled, predatory ciliate Lacrymaria exhibits extraordinary dynamic shape-shifting using a flexible "neck" that can stretch 7-8 times the length of its body to capture prey. The molecular mechanism behind this morphological change remains a mystery. We have observed that when in an active state, Lacrymaria repeatedly extends and contracts its neck to enable 360-degree space search and prey capture. This remarkable morphological change involves a unique actin-myosin system rather than the Ca2+-dependent system found in other contractile ciliates. Two cytoskeletons are identified in the cortex of the Lacrymaria cell, namely the myoneme cytoskeleton and the microtubule cytoskeleton. The myoneme cytoskeleton is composed of centrin-myosin proteins, exhibiting distinct patterns between the neck and body, with their boundary seemingly associated with the position of the macronucleus. A novel giant protein forming a ladder-like structure was discovered as a component of the microtubule cytoskeleton. Thick centrin-myosin fibers are situated very close to the right side of the ladders in the neck but are far away from such structures in the body. This arrangement enables the decoupling of the neck and body. Plasmodium-like unconventional actin has been discovered in Lacrymaria, and this may form highly dynamic short filaments that could attach to the giant protein and myosin, facilitating coordination between the two cytoskeletons in the neck. In summary, this fascinating organism employs unconventional cytoskeletal components to accomplish its extraordinary dynamic shape-shifting.
RESUMO
Background: In the 21st century, as globalization accelerates and global public health crises occur, the One Health approach, guided by the holistic thinking of human-animal-environment and emphasizing interdisciplinary collaboration to address global health issues, has been strongly advocated by the international community. An immediate requirement exists for the creation of an assessment tool to foster One Health initiatives on both global and national scales. Methods: Built upon extensive expert consultations and dialogues, this follow-up study enhances the 2022 global One Health index (GOHI) indicator system. The GOHI framework is enriched by covering three indices, e.g. external drivers index (EDI), intrinsic drivers index (IDI), and core drivers index (CDI). The comprehensive indicator system incorporates 13 key indicators, 50 indicators, and 170 sub I-indicators, utilizing a fuzzy analytic hierarchy process to ascertain the weight for each indicator. Weighted and summed, the EDI, IDI, and CDI scores contribute to the computation of the overall GOHI 2022 score. By comparing the ranking and the overall scores among the seven regions and across 160 countries/territories, we have not only derived an overall profile of the GOHI 2022 scores, but also assessed the GOHI framework. We also compared rankings of indicators and sub I-indicators to provide greater clarity on the strengths and weaknesses of each region within the One Health domains. Results: The GOHI 2022 performance reveals significant disparities between countries/territories ranged from 39.03 to 70.61. The global average score of the GOHI 2022 is 54.82. The average score for EDI, IDI, and CDI are 46.57, 58.01, and 57.25, respectively. In terms of global rankings, countries from North America, Europe and Central Asia, East Asia and Pacific present higher scores. In terms of One Health domains of CDI, the lowest scores are observed in antimicrobial resistance (median: 43.09), followed by food security (median: 53.78), governance (median: 54.77), climate change (median: 64.12) and zoonotic diseases (median: 69.23). Globally, the scores of GOHI vary spatially, with the highest score in North America while lowest in sub-Saharan Africa. In addition, evidence shows associations between the socio-demographic profile of countries/territories and their GOHI performance in certain One Health scenarios. Conclusion: The objective of GOHI is to guide impactful strategies for enhancing capacity building in One Health. With advanced technology and an annually updated database, intensifying efforts to refine GOHI's data-mining methodologies become imperative. The goal is to offer profound insights into disparities and progressions in practical One Health implementation, particularly in anticipation of future pandemics.
RESUMO
The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.