Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Transl Med ; 22(1): 193, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388430

RESUMO

Aberrant upregulation of the ubiquitin-specific protease 14 (USP14) has been found in some malignant tumors, including oral squamous cell carcinoma (OSCC). In this study, we further demonstrated that aberrantly overexpressed USP14 was also closely related to adverse clinicopathological features and poor prognosis in patients with OSCC, so we hypothesized that USP14 might act as a tumor-promoting factor during the progression of OSCC. Notably, we originally proved that USP14 is a deubiquitinating enzyme for phosphofructokinase-1 liver type (PFKL), a key rate-limiting enzyme involved in the glycolytic pathway. USP14 interacts with PFKL and enhances its stability through deubiquitination in OSCC cells, which in turn enhances PFKL-mediated glycolytic metabolism and ultimately promote cellular proliferation, migration, and tumorigenesis. In this work, we have also demonstrated for the first time that USP14 is a critical regulator of glycolysis in OSCC and verified a novel mechanism whereby it is involved in tumor metastasis and growth. Collectively, our findings provide novel insights into the tumor-promoting role of USP14 and establish mechanistic foundations for USP14-targeting therapies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Fosfofrutoquinase-1 , Fígado , Glicólise , Proliferação de Células , Proteases Específicas de Ubiquitina , Linhagem Celular Tumoral , Ubiquitina Tiolesterase
2.
PLoS Genet ; 8(5): e1002713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654670

RESUMO

The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP-associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits.


Assuntos
Variações do Número de Cópias de DNA/genética , Obesidade , Síndrome de Smith-Magenis , Transativadores/metabolismo , Anormalidades Múltiplas , Animais , Peso Corporal , Deleção Cromossômica , Transtornos Cromossômicos , Duplicação Cromossômica , Dieta Hiperlipídica , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética
3.
Hum Mol Genet ; 21(14): 3083-96, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22492990

RESUMO

Potocki-Lupski syndrome (PTLS; MIM #610883), characterized by neurobehavioral abnormalities, intellectual disability and congenital anomalies, is caused by a 3.7-Mb duplication in 17p11.2. Neurobehavioral studies determined that ∼70-90% of PTLS subjects tested positive for autism or autism spectrum disorder (ASD). We previously chromosomally engineered a mouse model for PTLS (Dp(11)17/+) with a duplication of a 2-Mb genomic interval syntenic to the PTLS region and identified consistent behavioral abnormalities in this mouse model. We now report extensive phenotyping with behavioral assays established to evaluate core and associated autistic-like traits, including tests for social abnormalities, ultrasonic vocalizations, perseverative and stereotypic behaviors, anxiety, learning and memory deficits and motor defects. Alterations were identified in both core and associated ASD-like traits. Rearing this animal model in an enriched environment mitigated some, and even rescued selected, neurobehavioral abnormalities, suggesting a role for gene-environment interactions in the determination of copy number variation-mediated autism severity.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/psicologia , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Síndrome de Smith-Magenis/psicologia , Anormalidades Múltiplas , Animais , Transtorno Autístico/genética , Comportamento Animal , Educação Infantil , Pré-Escolar , Transtornos Cromossômicos , Duplicação Cromossômica , Feminino , Interação Gene-Ambiente , Humanos , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Smith-Magenis/genética
4.
Epilepsia ; 55(2): e6-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372310

RESUMO

Advanced variant detection in genes underlying risk of sudden unexpected death in epilepsy (SUDEP) can uncover extensive epistatic complexity and improve diagnostic accuracy of epilepsy-related mortality. However, the sensitivity and clinical utility of diagnostic panels based solely on established cardiac arrhythmia genes in the molecular autopsy of SUDEP is unknown. We applied the established clinical diagnostic panels, followed by sequencing and a high density copy number variant (CNV) detection array of an additional 253 related ion channel subunit genes to analyze the overall genomic variation in a SUDEP of the 3-year-old proband with severe myoclonic epilepsy of infancy (SMEI). We uncovered complex combinations of single nucleotide polymorphisms and CNVs in genes expressed in both neurocardiac and respiratory control pathways, including SCN1A, KCNA1, RYR3, and HTR2C. Our findings demonstrate the importance of comprehensive high-resolution variant analysis in the assessment of personally relevant SUDEP risk. In this case, the combination of de novo single nucleotide polymorphisms (SNPs) and CNVs in the SCN1A and KCNA1 genes, respectively, is suspected to be the principal risk factor for both epilepsy and premature death. However, consideration of the overall biologically relevant variant complexity with its extensive functional epistatic interactions reveals potential personal risk more accurately.


Assuntos
Morte Súbita/patologia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Genômica/métodos , Canal de Potássio Kv1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Sequência de Aminoácidos , Autopsia , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Humanos , Canal de Potássio Kv1.1/química , Masculino , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.1/química , Fatores de Risco
5.
Am J Med Genet A ; 161A(7): 1561-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23703963

RESUMO

Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by multiple congenital anomalies, intellectual disability, behavioral abnormalities, and disordered sleep resulting from an ~3.7 Mb deletion copy number variant (CNV) on chromosome 17p11.2 or from point mutations in the gene RAI1. The reciprocal duplication of this region results in another genomic disorder, Potocki-Lupski syndrome (PTLS; OMIM 610883), characterized by autism, intellectual disability, and congenital anomalies. We previously used chromosome-engineering and gene targeting to generate mouse models for PTLS (Dp(11)17/+), and SMS due to either deletion CNV or gene knock-out (Df(11)17-2/+ and Rai1(+/-) , respectively) and we observed phenotypes in these mouse models consistent with their associated human syndromes. To investigate the contribution of individual genes to the circadian phenotypes observed in SMS, we now report the analysis of free-running period lengths in Rai1(+/-) and Df(11)17-2/+ mice, as well as in mice deficient for another known circadian gene mapping within the commonly deleted/duplicated region, Dexras1, and we compare these results to those previously observed in Dp(11)17/+ mice. Reduced free-running period lengths were seen in Df(11)17-2/+, Rai1(+/-) , and Dexras1(-/-) , but not Dexras1(+/-) mice, suggesting that Rai1 may be the primary gene underlying the circadian defects in SMS. However, we cannot rule out the possibility that cis effects between multiple haploinsufficient genes in the SMS critical interval (e.g., RAI1 and DEXRAS1) either exacerbate the circadian phenotypes observed in SMS patients with deletions or increase their penetrance in certain environments. This study also confirms a previous report of abnormal circadian function in Dexras1(-/-) mice.


Assuntos
Transtornos Cronobiológicos/genética , Síndrome de Smith-Magenis/genética , Transativadores/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Knockout , Corrida , Proteínas ras/genética
6.
PLoS Biol ; 8(11): e1000543, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21124890

RESUMO

A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.


Assuntos
Modelos Animais de Doenças , Dosagem de Genes , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas , Animais , Transtornos Cromossômicos , Duplicação Cromossômica , Expressão Gênica , Camundongos , Fenótipo , RNA Mensageiro/genética , Recombinação Genética
7.
Exp Ther Med ; 26(5): 508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840563

RESUMO

The mortality rate of ovarian cancer (OC) is high, posing a serious threat to women's lives. Zinc oxide nanoparticles (ZnO-NPs) show great potential in the treatment of cancer. However, the mechanism of ZnO-NPs in inhibiting the malignant proliferation and chemotherapy resistance of OC has remained elusive. In the present study, ZnO-NPs at different concentrations were used to treat SKOV3 cells, and subsequently, analyses including the Cell Counting Kit-8 assay, EDU staining, colony-formation assay, flow cytometry, wound-healing assay, Transwell assay and western blot were used to detect cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) and chemotherapy resistance, as well as endoplasmic reticulum stress (ERS)- and autophagy-related indicators. Finally, the mechanisms of action of ZnO-NPs on OC were examined by adding ERS inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA). It was found that ZnO-NPs inhibited SKOV3 cell proliferation, facilitated apoptosis and induced cell cycle arrest. Furthermore, ZnO-NPs inhibited the invasion, migration and EMT of SKOV3 cells. ZnO-NPs also inhibited chemotherapy resistance of SKOV3 cells. ZnO-NPs activated ERS and promoted autophagy. The addition of 4-PBA or 3-MA significantly reversed the effects of ZnO-NPs on SKOV3 cells. Overall, ZnO-NPs inhibit the malignant progression and the chemotherapy resistance of SKOV3 cells by activating ERS and promoting autophagy.

8.
Cell Signal ; 110: 110837, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544636

RESUMO

BACKGROUND: Despite some progress having been made regarding the treatment of T-cell acute lymphoblastic leukemia (T-ALL), the prognosis of T-ALL, particularly adult T-ALL, is still poor. Identifying novel, effective anti-T-ALL drugs is of great significance. Anlotinib, an oral tyrosine kinase inhibitor currently utilized in the treatment of lung cancer, exhibited a promising anti-T-ALL effect. A comprehensive study should therefore be conducted to explore both the in vitro as well as in vivo mechanisms of the anti-T-ALL effects of anlotinib. METHODS: CCK8 assays and flow cytometry were employed to investigate the viability, cell cycle distribution, and apoptosis of T-ALL cell lines when treated with anlotinib. T-ALL xenograft mouse models were established to examine the in vivo antileukemic effects of anlotinib. Cellular and molecular analysis of T-ALL were conducted to define the underlying mechanisms. RESULTS: In vitro, anlotinib significantly inhibited the viability, induced G2/M phase arrest and apoptosis in T-ALL cell lines in a concentration-dependent pattern. In vivo, anlotinib also demonstrated a strong anti-tumor effect at doses that are well-tolerated. Interestingly, anlotinib could decrease the protein levels of the intracellular domains of NOTCH1 (ICN1) and c-Myc, two important targets for T-ALL. Mechanistically, anlotinib-induced c-Myc reduction was associated with proteasome-mediated degradation, while the ICN1 reduction was not due to protein degradation or transcriptional repression. CONCLUSIONS: The present study showed that anlotinib may be a promising anti-T-ALL candidate drug, and simultaneous reduction of the protein levels of both ICN1 and c-Myc may contribute to the anti-T-ALL efficacy of anlotinib.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Quinolinas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Indóis/farmacologia , Indóis/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Proliferação de Células , Apoptose
9.
Biol Direct ; 18(1): 81, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017487

RESUMO

The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Smad8/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo
10.
Annu Rev Genomics Hum Genet ; 10: 451-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19715442

RESUMO

Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution.


Assuntos
Doença/genética , Evolução Molecular , Dosagem de Genes , Polimorfismo de Nucleotídeo Único , Animais , Hibridização Genômica Comparativa , DNA/química , DNA/genética , Replicação do DNA , Humanos
11.
Genet Med ; 14(1): 90-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22237436

RESUMO

PURPOSE: Cardiovascular abnormalities are newly recognized features of duplication 17p11.2 syndrome. In a single-center study, we evaluated subjects with duplication 17p11.2 syndrome for cardiovascular abnormalities. METHODS: Twenty-five subjects with 17p11.2 duplication identified by chromosome analysis and/or array-based comparative genomic hybridization were enrolled in a multidisciplinary protocol. In our clinical evaluation of these subjects, we performed physical examinations, echocardiography, and electrocardiography. Three of these subjects were followed up longitudinally at our institution. RESULTS: Cardiovascular anomalies, including structural and conduction abnormalities, were identified in 10 of 25 (40%) of subjects with duplication 17p11.2 syndrome. The most frequent abnormality was dilated aortic root (20% of total cohort). Bicommissural aortic valve (2/25), atrial (3/25) and ventricular (2/25) septal defects, and patent foramen ovale (4/25) were also observed. CONCLUSION: Duplication 17p11.2 syndrome is associated with structural heart disease, aortopathy, and electrocardiographic abnormalities. Individuals with duplication 17p11.2 syndrome should be evaluated by electrocardiography and echocardiography at the time of diagnosis and monitored for cardiovascular disease over time. Further clinical investigation including longitudinal analysis would likely determine the age of onset and characterize the progression (if any) of vasculopathy in subjects with duplication 17p11.2 syndrome, so that specific guidelines can be established for cardiovascular management.


Assuntos
Anormalidades Cardiovasculares/genética , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas , Adolescente , Adulto , Criança , Pré-Escolar , Transtornos Cromossômicos , Duplicação Cromossômica , Hibridização Genômica Comparativa , Feminino , Ordem dos Genes , Humanos , Masculino , Adulto Jovem
12.
Am J Med Genet A ; 158A(11): 2807-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22991245

RESUMO

A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.


Assuntos
Dosagem de Genes , Fenótipo , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas , Animais , Comportamento Animal , Transtornos Cromossômicos , Duplicação Cromossômica , Modelos Animais de Doenças , Ingestão de Líquidos , Estudos de Associação Genética , Camundongos
13.
J Allergy Clin Immunol ; 127(6): 1579-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21514638

RESUMO

BACKGROUND: Heterozygous deleterious mutations in the gene encoding the tumor necrosis factor receptor superfamily member 13b (TNFRSF13B), or transmembrane activator and CAML interactor (TACI), have been associated with the development of common variable immunodeficiency. Smith-Magenis syndrome (SMS) is a genetic disorder characterized by developmental delay, behavioral disturbances, craniofacial anomalies, and recurrent respiratory tract infections. Eighty percent of subjects have a chromosome 17p11.2 microdeletion, which includes TACI. The remaining subjects have mutations sparing this gene. OBJECTIVE: We examined TACI protein expression and function in patients with SMS to define the role of TACI haploinsufficiency in B-cell function. METHODS: We studied TACI expression and function in a cohort of 29 patients with SMS. RESULTS: In patients with SMS with only 1 TACI allele, we found decreased B-cell extracellular and intracellular expression of TACI, reduced binding of a proliferation-inducing ligand, and decreased TACI-induced expression of activation-induced cytidine deaminase mRNA, but these were normal for cells from patients with SMS and 2 TACI alleles. Impaired upregulation of B-cell surface TACI expression by a Toll-like receptor 9 agonist was also observed in cells from patients with 1 TACI allele. Gene sequence analysis of the remaining TACI allele revealed common polymorphisms, with the exception of 1 patient with an amino acid change of uncertain significance. Patients with SMS with the lowest TACI expression had significantly reduced antibody responses to pneumococcal vaccine serotypes. DISCUSSION: Our findings suggest that haploinsufficiency of the TACI gene results in humoral immune dysfunction, highlighting the role of genomic copy number variants in complex traits.


Assuntos
Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Adolescente , Adulto , Linfócitos B/imunologia , Sequência de Bases , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Estudos de Coortes , Citidina Desaminase/genética , Feminino , Haploinsuficiência , Humanos , Imunidade Humoral , Lactente , Masculino , Mutação , RNA Mensageiro/genética , Receptor Toll-Like 9/metabolismo , Adulto Jovem
14.
Dis Markers ; 2022: 7386895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256894

RESUMO

Background: Oral lichen planus (OLP) is a chronic autoimmune oral mucosal disease that seriously affects the life quality of the patients. But till now, the exact etiology and pathogenesis of OLP remain unclear. Our study is aimed at finding the key molecules and pathways involved in the pathogenesis mechanisms of OLP, providing more effective therapeutic strategies for OLP. Methods: Data from GSE52130 were downloaded from GEO datasets for analysis. Then, we carried out enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology (GO) and KEGG pathway analyses. Next, the CIBERSORT algorithm was used to assess immune cell infiltration in OLP patients. Furthermore, we also constructed a protein-protein interaction network using STRING and Cytoscape and simultaneously sought potential transcription factors plug-in including MCODE CytoHubba and iRegulon. In addition, ROC analysis was employed to assess the diagnostic performance of these hub genes. Lastly, we identified 6 promising novel drugs to treat OLP through Connectivity Map. Results: We illustrated that 255 DEGs were mainly enriched in the focal adhesion pathway and metabolism pathways. Besides, Cibersort analysis showed that M1 macrophages, T follicular helper cells, and T regulatory cells are more infiltrated in OLP samples. In addition, ROC analysis demonstrated that these hub genes owned higher diagnostic value in OLP, in which SPRR1B had the highest diagnostic value. And we also predicted that SOX7 was the most relevant transcription factor of those hub genes. Lastly, through the CMap database, we identified 6 small molecules as possible treatment drugs of OLP. Conclusion: Our research identified that SPRR1B could be used as potential biomarkers for the early diagnosis of OLP. In addition, as a chronic autoimmune oral mucosal disease, OLP has different infiltration types of immune cells. Furthermore, 6 small molecules were proposed as promising novel treatment drugs for OLP patients. Therefore, our research may provide new impetus for the development of effective OLP biological treatment options.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Líquen Plano Bucal/diagnóstico , Líquen Plano Bucal/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Biomarcadores/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Bases de Dados Genéticas , Diagnóstico Precoce , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Líquen Plano Bucal/genética , Líquen Plano Bucal/metabolismo , Mapas de Interação de Proteínas , Curva ROC
15.
J Oncol ; 2022: 4867730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693982

RESUMO

Objective: To investigate the function and regulatory mechanisms of methylenetetrahydrofolate dehydrogenase (MTHFD) family genes in oral squamous cell carcinoma (OSCC), especially focus on their regulating role in tumor immunity. Methods: The publicly available data from the TCGA database were used to investigate the expression pattern and regulatory role of MTHFD family genes in OSCC. More importantly, the involvement of MTHFD family genes in tumor immunity was investigated in terms of immune and stromal cell infiltration in tumor microenvironment, tumor-infiltrating immune cells, and immunomodulatory genes (e.g., immunoinhibitory genes and immunostimulatory genes). Statistical analysis was performed using R software packages and public web servers. Results: MTHFD family genes were considerably upregulated in OSCC as compared with normal oral tissue. Patients with high MTHFD2 expression presented worse survival outcomes than those with low MTHFD2 expression. Functional enrichment analysis showed that the top 100 positively and negatively correlated genes of the MTHFD family genes were significantly enriched in several KEGG pathways, including cell cycle, spliceosome, DNA replication, and Th17 cell differentiation. As a result of tumor immunity analysis, MTHFD2L expression was found to be negatively related to the Estimate-Stromal-Immune score in OSCC; however, there was no statistical significance between the Estimate-Stromal-Immune score and MTHFD1, MTHFD1L, or MTHFD2 in OSCC. Additionally, MTHFD family genes were found to be significantly positively correlated with tumor-infiltrating immune cells, including Treg and Th17 cells. Moreover, MTHFD family genes were significantly correlated with several immune inhibitory genes such as CD274 and CTLA4 and several immune-stimulatory genes such as CXCL12, CXCR4, and TMIGD2. Conclusion: Given the expression pattern, prognostic value, biological functions, and involvement in tumor immunity, MTHFD family genes could serve as potential therapeutic biomarkers in targeting tumor immunity in oral cancer.

16.
Front Endocrinol (Lausanne) ; 13: 846154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663324

RESUMO

Objective: To investigate the mechanisms of super-enhancer-associated LINC01485/miR-619-5p/RUNX2 signaling axis involvement in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: Osteogenic differentiation of hBMSCs was induced in vitro. The expression levels of LINC01485 and miR-619-5p during osteogenesis were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Osteogenic differentiation was examined by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, ALP activity measurement, and Alizarin Red S (ARS) staining assays. Thereafter, the effects of LINC01485 and miR-619-5p on osteogenic differentiation of hBMSCs were evaluated by performing loss- and gain-of-function experiments. Subsequently, a fluorescence in situ hybridization (FISH) assay was employed to determine the cellular localization of LINC01485. Bioinformatics analysis, RNA antisense purification (RAP) assay, and dual-luciferase reporter assays were conducted to analyze the interactions of LINC01485, miR-619-5p, and RUNX2. Rescue experiments were performed to further delineate the role of the competitive endogenous RNA (ceRNA) signaling axis consisting of LINC01485/miR-619-5p/RUNX2 in osteogenic differentiation of hBMSCs. Results: The expression of LINC01485 was up-regulated during osteogenic differentiation of hBMSCs. The overexpression of LINC01485 promoted osteogenic differentiation of hBMSCs by up-regulating the expression of osteogenesis-related genes [e.g., runt-related transcription factor 2 (RUNX2), osterix (OSX), collagen type 1 alpha 1 (COL1A1), osteocalcin (OCN), and osteopontin (OPN)], and increasing the activity of ALP. ALP staining and ARS staining were also found to be increased upon overexpression of LINC01485. The opposing results were obtained upon LINC01485 interference in hBMSCs. miR-619-5p was found to inhibit osteogenic differentiation. FISH assay displayed that LINC01485 was mainly localized in the cytoplasm. RAP assay results showed that LINC01485 bound to miR-619-5p, and dual-luciferase reporter assay verified that LINC01485 bound to miR-619-5p, while miR-619-5p and RUNX2 bound to each other. Rescue experiments illustrated that LINC01485 could promote osteogenesis by increasing RUNX2 expression by sponging miR-619-5p. Conclusion: LINC01485 could influence RUNX2 expression by acting as a ceRNA of miR-619-5p, thereby promoting osteogenic differentiation of hBMSCs. The LINC01485/miR-619-5p/RUNX2 axis might comprise a novel target in the bone tissue engineering field.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética
17.
Emerg Microbes Infect ; 11(1): 1174-1185, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35380505

RESUMO

The globally circulating H5N8 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin (HA) gene are responsible for the loss of more than 33 million domestic poultry since January 2020. Moreover, the H5N8 viruses have reassorted with other avian influenza viruses and formed H5N1, H5N2, H5N3, H5N4, and H5N5 viruses in Europe, Africa, and North America. In this study, we analyzed 15 H5N6 viruses isolated from poultry and seven H5N6 viruses isolated from humans, and found these viruses formed seven different genotypes by deriving the clade 2.3.4.4b HA gene of H5N8 viruses, the neuraminidase of domestic duck H5N6 viruses, and internal genes of different viruses that previously circulated in domestic ducks and wild birds in China. Two of these genotypes (genotype 3 and genotype 6) have caused human infections in multiple provinces. The H5N6 viruses isolated from poultry have distinct pathotypes in mice; some of them replicate systemically and are highly lethal in mice. Although these viruses exclusively bind to avian-type receptors, it is worrisome that they may obtain key mutations that would increase their affinity for human-type receptors during replication in humans. Our study indicates that the novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 viruses were generated through reassortment in domestic ducks and may have spread across a wide area of China, thereby posing a new challenge to the poultry industry and human health. Our findings emphasize the importance of careful monitoring, evaluation, and control of the H5N6 viruses circulating in nature.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves , China/epidemiologia , Patos , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Camundongos , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
18.
Transbound Emerg Dis ; 69(4): 2156-2172, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34192815

RESUMO

H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças dos Roedores , Animais , China/epidemiologia , Fazendas , Humanos , Influenza Aviária/epidemiologia , Camundongos , Filogenia , Aves Domésticas
19.
Sci China Life Sci ; 65(4): 795-808, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34757542

RESUMO

The H5N8 avian influenza viruses have been widely circulating in wild birds and are responsible for the loss of over 33 million domestic poultry in Europe, Russia, Middle East, and Asia since January 2020. To monitor the invasion and spread of the H5N8 virus in China, we performed active surveillance by analyzing 317 wild bird samples and swab samples collected from 41,172 poultry all over the country. We isolated 22 H5N8 viruses from wild birds and 14 H5N8 viruses from waterfowls. Genetic analysis indicated that the 36 viruses formed two different genotypes: one genotype viruses were widely detected from different wild birds and domestic waterfowls; the other genotype was isolated from a whopper swan. We further revealed the origin and spatiotemporal spread of these two distinct H5N8 virus genotypes in 2020 and 2021. Animal studies indicated that the H5N8 isolates are highly pathogenic to chickens, mildly pathogenic in ducks, but have distinct pathotypes in mice. Moreover, we found that vaccinated poultry in China could be completely protected against H5N8 virus challenge. Given that the H5N8 viruses are likely to continue to spread in wild birds, vaccination of poultry is highly recommended in high-risk countries to prevent H5N8 avian influenza.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Vacinas , Animais , Animais Selvagens , Galinhas , China/epidemiologia , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Camundongos , Filogenia , Aves Domésticas
20.
Contrast Media Mol Imaging ; 2021: 2146578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497480

RESUMO

This exploration aims to investigate the important role of magnetic resonance imaging (MRI) in the diagnosis of ovarian cancer under the ADNEX. From March 2017 to December 2019, 84 patients with ovarian cancer confirmed by pathological operation were selected as the research objects. The consistency of ADNEX, MRI, and ADNEX∗MRI in the diagnosis and staging of ovarian cancer was calculated separately. SPSS 26.0 statistical software was used to compare the accuracy, sensitivity, specificity, and diagnostic value of the two diagnostic methods. The results show that the accuracy and sensitivity of ADNEX are 78.6% and 93.2%, respectively. The accuracy and sensitivity of MRI are 81.2% and 89.4%, respectively. There is no significant difference between the two methods (p < 0.05). The overall consistency rates of ADNEX∗MRI, MRI diagnosis, and ADNEX for ovarian cancer staging are 94.2%, 74%, and 65.4%, respectively. There was a significant difference (p < 0.05). ADNEX∗MRI and MRI diagnosis were compared with each stage of ADNEX. There is a significant difference between the second and fourth stages (p < 0.05), and there is also a significant difference in the fourth stage (p < 0.017). It is concluded that MRI diagnosis of ovarian cancer based on ADNEX is superior to ADNEX and MRI examination alone, which provides a certain reference value for clinical staging of ovarian cancer.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Ovarianas/diagnóstico , Ovário/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Ovário/patologia , Software , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA