Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 11: e16590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107577

RESUMO

Background: The pathological mechanism of heat stroke (HS) involves the acute phase response, unbalanced immunological/inflammatory reactions, and coagulation initiation, especially platelet activation. Although exosomes contain proteins involved in these biological processes, their protein cargo levels and potential roles in HS remain unknown. This study explored the serum exosome protein expression patterns after HS and their potential roles in the pathogenesis of HS. Methods: Blood samples were collected from ten patients diagnosed with HS upon admission to the intensive care unit (six with severe HS and four with mild HS). Samples from six healthy volunteers were included as control. Using ultracentrifugation, exosomes were prudently isolated, and their protein contents were profiled using liquid chromatography-tandem mass spectrometry analysis with isobaric tags for relative and absolute quantification-based proteomics. Results: Compared with healthy volunteers, patients with HS showed significant changes in the levels of 33 exosomal proteins (23 upregulated and 10 downregulated). The most upregulated proteins included serum amyloid A-1 (SAA-1), von Willebrand factor (vWF), S100A8, and histone H3. In addition, SAA-1, vWF, platelet membrane glycoprotein, S100A8, and histone H3 were more enriched in the exosomes from patients with severe HS than from those with mild HS. Gene ontology analysis revealed that the HS-modulated exosomal proteins were mostly related to inflammatory response, including the acute-phase response, platelet activation/degranulation, and innate immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of proteins in the IL-17 signaling pathway, platelet activation, neutrophil extracellular trap formation, Fc epsilon RI signaling pathway, chemokine signaling pathway, and NOD-like receptor signaling pathway, among others. Several serum exosomal proteins, including SAA-1, vWF, and S100A8, which are related to the acute phase, inflammatory response, and platelet activation, were confirmed to be elevated in patients with HS, and were significantly correlated with disease severity, organ dysfunction, and death. Conclusion: Overall, this study explores the potential role of the serum exosomal proteome in the inflammatory response and platelet activation in HS, suggests the pathological mechanisms underlying HS-induced injuries, and recommends reliable exosomal biomarkers for predicting HS prognosis.


Assuntos
Exossomos , Golpe de Calor , Insolação , Humanos , Reação de Fase Aguda/metabolismo , Histonas/análise , Exossomos/química , Fator de von Willebrand/análise , Proteômica/métodos , Proteínas Sanguíneas/análise , Ativação Plaquetária , Golpe de Calor/metabolismo
2.
Heliyon ; 9(12): e22805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125505

RESUMO

Aim: To investigate the mechanism of p53-mediated suppression of heat stress-induced oxidative stress damage by manganese superoxide dismutase (MnSOD) in endothelial cells (ECs). Methods: Primary ECs isolated from mouse aortas were used to examine the effects of heat stress on vascular ECs viability and apoptosis. We measured MnSOD expression, reactive oxygen species (ROS) production, p53 expression, viability, and apoptosis of heat stress-induced ECs. We also tested the protective effects of MitoQ10, a mitochondrial-targeted antioxidant, and Pifithrin-α, a p53 inhibitor, in ECs from a mouse model of heat stroke. Results: Heat stress increased cellular apoptosis, ROS production, and p53 expression, while reducing cellular viability and MnSOD expression in ECs. We also showed that the suppression of MnSOD expression by heat stress in ECs was mediated by interactions between p53 and Sp1. Furthermore, MitoQ10 and Pifithrin-α alleviated heat stress-induced oxidative stress and apoptosis in ECs. Conclusion: Our results revealed that p53-mediated MnSOD downregulation is a key mechanism for heat stress-induced oxidative stress damage in ECs and indicated that MitoQ10 and Pifithrin-α could be potential therapeutic agents for heat stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA