Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921556

RESUMO

Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Organismos Aquáticos , Terpenos/farmacologia , Terpenos/química , Humanos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida/métodos
2.
Mar Drugs ; 21(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233453

RESUMO

The incidence and mortality of cervical cancer in female malignancies are second only to breast cancer, which brings a heavy health and economic toll worldwide. Paclitaxel (PTX)-based regimens are the first-class choice; however, severe side effects, poor therapeutic effects, and difficulty in effectively preventing tumor recurrence or metastasis are unavoidable. Therefore, it is necessary to explore effective therapeutic interventions for cervical cancer. Our previous studies have shown that PMGS, a marine sulfated polysaccharide, exhibits promising anti-human papillomavirus (anti-HPV) effects through multiple molecular mechanisms. In this article, a continuous study identified that PMGS, as a novel sensitizer, combined with PTX exerted synergistic anti-tumor effects on cervical cancer associated with HPV in vitro. Both PMGS and PTX inhibited the proliferation of cervical cancer cells, and the combination of PMGS with PTX displayed significant synergistic effects on Hela cells. Mechanistically, PMGS synergizes with PTX by enhancing cytotoxicity, inducing cell apoptosis and inhibiting cell migration in Hela cells. Collectively, the combination of PTX and PMGS potentially provides a novel therapeutic strategy for cervical cancer.


Assuntos
Paclitaxel , Neoplasias do Colo do Útero , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Células HeLa , Sulfatos/farmacologia , Linhagem Celular Tumoral , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Apoptose
3.
J Cell Mol Med ; 25(15): 7157-7168, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227740

RESUMO

Ageing is a crucial risk factor for the development of age-related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti-ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti-ageing drug to alleviate cardiac ageing. D-galactose (D-gal)-induced C57BL/6J ageing mice were established by subcutaneous injection of D-gal (200 mg·kg-1 ·d-1 ) for 8 weeks. AOS (50, 100 and 150 mg·kg-1 ·d-1 ) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D-gal-induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D-gal-induced up-regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose-dependent manner. To further explore the potential mechanisms contributing to the anti-ageing protective effect of AOS, the age-related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D-gal-induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.


Assuntos
Envelhecimento/metabolismo , Alginatos/farmacologia , Antioxidantes/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Envelhecimento/patologia , Animais , Galactose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Renovação Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Natriuréticos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Invest New Drugs ; 38(2): 311-320, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31087223

RESUMO

The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays central roles in cancer cell growth and survival. Drug repurposing strategies have provided a valuable approach for developing antitumor drugs. Zelnorm (tegaserod maleate) was originally designed as an agonist of 5-hydroxytryptamine 4 receptor (5-HT4R) and approved by the FDA for treating irritable bowel syndrome with constipation (IBS-C). Through the use of a high-throughput drug screening system, Zelnorm was identified as a JAK/STAT3 signaling inhibitor. Moreover, the inhibition of STAT3 phosphorylation by Zelnorm was independent of its original target 5-HT4R. Zelnorm could cause G1 cell cycle arrest, induce cell apoptosis and inhibit the growth of a variety of cancer cells. The present study identifies Zelnorm as a novel JAK/STAT3 signaling inhibitor and reveals a new clinical application of Zelnorm upon market reintroduction.


Assuntos
Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Janus Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Janus Quinases/metabolismo , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores 5-HT4 de Serotonina/genética , Fator de Transcrição STAT3/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
J Nat Prod ; 83(3): 617-625, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31916778

RESUMO

A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.


Assuntos
Produtos Biológicos/química , Clorófitas/química , Depsipeptídeos/química , Samoa Americana , Aminoácidos , Animais , Produtos Biológicos/isolamento & purificação , Depsipeptídeos/isolamento & purificação , Feminino , Estrutura Molecular , Ratos , Espectrometria de Massas em Tandem
6.
Bioorg Chem ; 104: 104246, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911197

RESUMO

Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 µM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Colinesterase/farmacologia , Cunninghamella/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fenantrenos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cunninghamella/química , Relação Dose-Resposta a Droga , Electrophorus , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , Oxigênio/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 4 Toll-Like/metabolismo
7.
Mar Drugs ; 18(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036172

RESUMO

Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/metabolismo , Cianobactérias/química , Cianobactérias/classificação , Organismos Aquáticos , Descoberta de Drogas
8.
Mar Drugs ; 18(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110865

RESUMO

Aspergillus terreus has been reported to produce many secondary metabolites that exhibit potential bioactivities, such as antibiotic, hypoglycemic, and lipid-lowering activities. In the present study, two new thiodiketopiperazines, emestrins L (1) and M (2), together with five known analogues (3-7), and five known dihydroisocoumarins (8-12), were obtained from the marine-derived fungus Aspergillus terreus RA2905. The structures of the new compounds were elucidated by analysis of the comprehensive spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HRESIMS), one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) data. This is the first time that the spectroscopic data of compounds 3, 8, and 9 have been reported. Compound 3 displayed antibacterial activity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 32 µg/mL) and antifungal activity against Candida albicans (MIC = 32 µg/mL). In addition, compound 3 exhibited an inhibitory effect on protein tyrosine phosphatase 1 B (PTP1B), an important hypoglycemic target, with an inhibitory concentration (IC)50 value of 12.25 µM.


Assuntos
Antibacterianos/farmacologia , Aspergillus/química , Animais , Candida albicans/efeitos dos fármacos , Cumarínicos/química , Testes de Sensibilidade Microbiana , Oceanos e Mares , Piperazinas/química , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Int Heart J ; 61(1): 160-168, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31956132

RESUMO

Pulmonary arterial hypertension (PAH) is a serious and fatal cardiovascular disorder characterized by increased pulmonary vascular resistance and progressive pulmonary vascular remodeling. The underlying pathological mechanisms of PAH are multi-factorial and multi-cellular. Alginate oligosaccharide (AOS), which is produced by depolymerizing alginate, shows better pharmacological activities and beneficial effects. The present study was undertaken to investigate the effects and potential mechanisms of AOS-mediated alleviation of pulmonary hypertension. Pulmonary hypertension was induced in Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT; 60 mg/kg). Five weeks after the injection of MCT, AOS (5, 10, and 20 mg·kg-1·d-1) was injected intraperitoneally for another three weeks. The results showed that AOS prevented the development of MCT-induced pulmonary hypertension and right ventricular hypertrophy in a dose-dependent manner. AOS treatment also prevented MCT-induced pulmonary vascular remodeling via inhibition of the TGF-ß1/p-Smad2 signaling pathway. Furthermore, AOS treatment downregulated the expression of malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, and pro-inflammatory cytokines, decreased macrophage infiltration, and upregulated the expression of anti-inflammatory cytokines. These findings indicate that AOS exerts anti-oxidative and anti-inflammatory effects in pulmonary arteries, which may contribute to the alleviation of pulmonary hypertension and pulmonary vascular remodeling.


Assuntos
Alginatos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Hipertrofia Ventricular Direita/tratamento farmacológico , Monocrotalina/efeitos adversos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Alginatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Injeções Intraperitoneais , Masculino , Malondialdeído/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Distribuição Aleatória , Ratos , Remodelação Vascular/efeitos dos fármacos
10.
Am J Physiol Endocrinol Metab ; 316(1): E73-E85, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422704

RESUMO

Increased circulating branched-chain amino acids (BCAAs) have been involved in the pathogenesis of obesity and insulin resistance (IR). However, evidence relating berberine (BBR), gut microbiota, BCAAs, and IR is limited. Here, we showed that BBR could effectively rectify steatohepatitis and glucose intolerance in high-fat diet (HFD)-fed mice. BBR reorganized gut microbiota populations under both the normal chow diet (NCD) and HFD. Particularly, BBR noticeably decreased the relative abundance of BCAA-producing bacteria, including order Clostridiales; families Streptococcaceae, Clostridiaceae, and Prevotellaceae; and genera Streptococcus and Prevotella. Compared with the HFD group, predictive metagenomics indicated a reduction in the proportion of gut microbiota genes involved in BCAA biosynthesis but the enrichment genes for BCAA degradation and transport by BBR treatment. Accordingly, the elevated serum BCAAs of HFD group were significantly decreased by BBR. Furthermore, the Western blotting results implied that BBR could promote the BCAA catabolism in the liver and epididymal white adipose tissues of HFD-fed mice by activation of the multienzyme branched-chain α-ketoacid dehydrogenase complex (BCKDC), whereas by inhibition of the phosphorylation state of BCKDHA (E1α subunit) and branched-chain α-ketoacid dehydrogenase kinase (BCKDK). The ex vivo assay further confirmed that BBR could increase BCAA catabolism in both AML12 hepatocytes and 3T3-L1 adipocytes. Finally, data from healthy subjects and diabetics confirmed that BBR could improve glycemic control and modulate circulating BCAAs. Together, our findings clarified BBR improving IR associated not only with gut microbiota alteration in BCAA biosynthesis but also with BCAA catabolism in liver and adipose tissues.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/efeitos dos fármacos , Berberina/farmacologia , Disbiose/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Fígado/efeitos dos fármacos , Obesidade/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso , Feminino , Microbioma Gastrointestinal/genética , Intolerância à Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Metagenômica , Camundongos , Pessoa de Meia-Idade , Proteínas Quinases
11.
Anal Bioanal Chem ; 411(7): 1467-1477, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706074

RESUMO

α-L-Fucosidase (AFU) is a promising therapeutic target for the treatment of inflammation, cancer, cystic fibrosis, and fucosidosis. Some of the existing analytical methods for the assessment of AFU activity are lacking in sensitivity and selectivity, since most of them are based on spectrofluorimetric methods. More recently, mass spectrometry (MS) has evolved as a key technology for enzyme assays and inhibitor screening as it enables accurate monitoring of the conversion of substrate to product in enzymatic reactions. In this study, UHPLC-MS has been utilized to develop a simple, sensitive, and accurate assay for enzyme kinetics and inhibition studies of AFU3, a member of the AFU family. A reported method for analyzing saccharide involving a porous graphitic carbon column, combined with reduction by NaBH4/CH3OH, was used to improve sensitivity. The conversion of saccharide into alditol could reach nearly 100% in the NaBH4 reduction reaction. In addition, the bioanalytical quantitative screening method was validated according to US-FDA guidance, including selectivity, linearity, precision, accuracy, stability, and matrix effect. The developed method displayed a good accuracy, high sensitivity (LOD = 0.05 mg L-1), and good reproducibility (RSD < 15%). The assay accurately measured an IC50 value of 0.40 µM for the known AFU inhibitor, deoxyfuconojirimycin, which was consistent with results reported in the literature. Further validation of the assay was achieved through the determination of a high Z'-factor value of 0.89. The assay was applied to screen a marine-derived chemical library against AFU3, which revealed two marine-oriented pyrimidine alkaloids as potential AFU3 inhibitors. Graphical abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , alfa-L-Fucosidase/antagonistas & inibidores , Ensaios Enzimáticos/métodos , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo
12.
Mar Drugs ; 17(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035725

RESUMO

Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial-mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients.


Assuntos
Alginatos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Alginatos/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal , Humanos , Laminaria/química , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos
13.
Molecules ; 23(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874868

RESUMO

Phyllodiumpulchellum has been traditionally used as a medicinal herb because of its health-promoting effects, such as its hepatoprotective and antioxidant activities. In the present study, the petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and aqueous fraction were successively obtained from the ethanol extract of P. pulchellum. Two fractions, ethyl acetate fraction and n-butanol fraction, were found to display hepatoprotective and antioxidant activities. Further chemical investigation of the active fractions led to the isolation of its main constituents, including 11 flavonoids (1⁻11) and 8 indole alkaloids (12⁻19). There were 9 flavonoids (1⁻9) that were obtained from the ethyl acetate fraction, and 2 flavonoids (10 and 11) and 8 alkaloids (12⁻19) from the n-butanol fraction. Compounds 1⁻11 and 16⁻19 were isolated for the first time from P. pulchellum, and 1, 2, 8, 11, and 18 were obtained from the genus Phyllodium initially. Subsequently, the isolated compounds were evaluated for their in vitro hepatoprotective effects on the human normal hepatocyte cell line L-O2 injured by d-galactosamine and radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH). The flavonoids (-)-epigallocatechin (5) and (-)-epicatechin (6) exhibited prominent hepatoprotective activities with higher cell viability values (65.53% and 62.40% at 10 µM·mL-1, respectively) than the positive control, silymarin (61.85% at 10 µM·mL-1). In addition, compared with the positive control of vitamin C (IC50: 5.14 µg·mL-1), (-)-gallocatechin (3) and (-)-epigallocatechin (5) exhibited stronger antioxidant activities with IC50 values of 3.80 and 3.97 µg·mL-1, respectively. Furthermore, the total flavonoids from P. pulchellum were characterized using a high-performance liquid chromatography-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC-LTQ-Orbitrap-MS). In total, 34 flavonoids were tentatively identified, which had not been previously reported from P. pulchellum. In addition, we performed a semi-quantitative analysis of the isolated flavonoids. The contents of compounds 1⁻11 were 3.88, 17.73, 140.35, 41.93, 27.80, 4.34, 0.01, 0.20, 9.67, 795.85, and 5.23 µg·g-1, respectively. In conclusion, this study revealed that the flavonoids that were isolated from P. pulchellum showed hepatoprotective and antioxidant activities, indicating that, besides alkaloids, the flavonoids should be the potential pharmacodynamic ingredients that are responsible for the hepatoprotective and antioxidant activities of P. pulchellum.


Assuntos
Antioxidantes/farmacologia , Fabaceae/química , Fígado/efeitos dos fármacos , Antioxidantes/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/efeitos dos fármacos , Humanos , Espectrometria de Massas/métodos , Relação Estrutura-Atividade
14.
J Org Chem ; 82(9): 4774-4783, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28421761

RESUMO

The asymmetric organocatalyzed diversity-oriented one-pot synthesis has been developed to construct chroman-2-one derivatives and other heterocyclic compounds with excellent efficiency and stereoselectivity. The reactions represent a challenging issue, since it altered the inherent selectivity profiles exhibited by the substrates of 2-hydroxycinnamaldehyde 1 and trans-ß-nitrostyrene 2, which was previously reported as the asymmetric oxa-Michael-Michael cascade to generate chiral chromans. It should be noted that polycyclic O,O-acetal-containing compounds, which are found in numerous natural products and biologically interesting molecules, could also be achieved in good yields with excellent enantioselectivity as a single diastereoisomer with five continuous stereogenic centers.

15.
Bioorg Med Chem Lett ; 27(6): 1416-1419, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228362

RESUMO

Plinabulin, a drug targeting microtubule of cancer cells, has been currently tried in its phase III clinical study. However, low efficacy caused by poor pharmacokinetic (PK) properties has been considered to be the main obstacle to approved by the Food and Drug Administration. Herein, we introduced a deuterium atom as an isostere in its structure to become a new compound named (MBRI-001, No. 9 in a series of deuterium-substituted compounds). The structure of MBRI-001 was characterized by HRMS, NMR, IR and a single crystal analysis. MBRI-001 exhibited better pharmacokinetic characteristics than that of plinabulin. Additionally, its antitumor activity is in a low nanomolar level for a variety of cancer cell lines and high activity against human NCI-H460 xenograted in mice intravenous administration. Importantly, continuous administration of MBRI-001 exhibited lower toxicity compared to docetaxel. We thus suggest that MBRI-001 could be developed as a promising anti-cancer agent in near future.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Deutério/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Animais , Antineoplásicos/farmacocinética , Área Sob a Curva , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Divers ; 21(3): 577-583, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488201

RESUMO

Deuterium-enriched and fluorine-substituted compounds have been widely applied in drug discovery due to their advantages in the studies of clinical pharmacokinetics and metabolic profiles. Herein we synthesized a library of deuterated and fluorine-substituted plinabulin derivatives, and all 15 D- or F-compounds were characterized by MS, [Formula: see text] NMR and [Formula: see text]. Their antitumor activities were evaluated against human Jurkat T lymphocyte cells.


Assuntos
Antineoplásicos/síntese química , Deutério/química , Dicetopiperazinas/síntese química , Flúor/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Humanos , Células Jurkat , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
17.
Mar Drugs ; 15(7)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698495

RESUMO

Currently, DNA topoisomerase I (Topo I) inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5-100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Animais , Antozoários/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Fungos/química , Humanos , Plantas/química , Relação Estrutura-Atividade
18.
Org Biomol Chem ; 14(39): 9362-9374, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714262

RESUMO

A convenient approach to the synthesis of furostanol glycosides has been developed with the features of both highly efficient incorporation of a 26-O-ß-d-glucopyranosyl unit and ready formation of hemiketal ring E. The total syntheses of seven furostanol saponins including funlioside B, lilioglycoside, protobioside I, protodioscin, pallidifloside I, coreajaponins A and parisaponin I are efficiently achieved using an easily available 16ß-acetoxy-22-oxo-26-hydroxy-cholestanic derivative as a powerful building block. The α-glucosidase inhibitory activity of the synthesized saponins is also evaluated, which reveals that funlioside B is a highly potential lead for developing α-glucosidase inhibitors.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeos/síntese química , Saponinas/farmacologia , Esteróis/síntese química , Diosgenina/análogos & derivados , Diosgenina/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Glicosídeo Hidrolases/síntese química , Glicosídeos/química , Concentração Inibidora 50 , Estrutura Molecular , Saponinas/síntese química , Saponinas/química , Esteróis/química , Relação Estrutura-Atividade
19.
Mar Drugs ; 14(4)2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27043581

RESUMO

Sargassum seaweeds produce abundant biomass in China and have long been used as herbal medicine and food. Their characteristic fatty acid (FA) profiles and related potential function in promoting cardiovascular health (CVH) have not been systematically investigated. In this study, FA profiles of four medicinal Sargassum were characterized using GC-MS. Principal component analysis was used to discriminate the four medicinal Sargassum, and orthogonal projection to latent structures discriminant analysis was carried out between the two official species HAI ZAO and between the two folk medicine species HAI QIAN. In all of the algae investigated, the major SFA and MUFA were palmitic and stearic acid, respectively, while the major PUFAs were linoleic, arachidonic, and eicosapentaenoic acid. S. fusiforme and S. horneri had higher concentrations of PUFAs. With respect to CVH, all of the studied species, particularly S. fusiforme, exhibited satisfactory levels such as PUFA/SFA ratio and n-6/n-3 ratio. Each species possesses a unique FA profile and is discriminated clearly. Potential key FA markers (between the two Chinese official species, and between the two folk species) are assessed. The study provides characteristic fatty acid profiles of four Chinese medicinal Sargassum and their related potential function in promoting CVH.


Assuntos
Ácidos Graxos Insaturados/química , Sargassum/química , Sargassum/metabolismo , Alga Marinha/química , Alga Marinha/metabolismo , China , Cromatografia Gasosa-Espectrometria de Massas/métodos , Medicina Tradicional Chinesa , Análise de Componente Principal
20.
Mar Drugs ; 14(6)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-27322292

RESUMO

A series of aminoglucoglycerolipids derivatives had been synthesized, including 6'-acylamido-glucoglycerolipids 1a-1f and corresponding 2'-acylamido-glucoglycerolipids 2a-2c bearing different fatty acids, glucosyl diglycerides 3a-3e bearing different functional groups at C-6' and ether-linked glucoglycerolipids 4a-4c with double-tailed alkyl alcohol. The anti-influenza A virus (IAV) activity was evaluated by the cytopathic effects (CPE) inhibition assay. The results indicated that the integral structure of the aminoglycoglycerolipid was essential for the inhibition of IAV in MDCK cells. Furthermore, oral administration of compound 1d was able to significantly improve survival and decrease pulmonary viral titers in IAV-infected mice, which suggested that compound 1d merited further investigation as a novel anti-IAV candidate in the future.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Linhagem Celular , Cães , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA