Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 20(8): 1183-1186, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474809

RESUMO

Open-3DSIM is an open-source reconstruction platform for three-dimensional structured illumination microscopy. We demonstrate its superior performance for artifact suppression and high-fidelity reconstruction relative to other algorithms on various specimens and over a range of signal-to-noise levels. Open-3DSIM also offers the capacity to extract dipole orientation, paving a new avenue for interpreting subcellular structures in six dimensions (xyzθλt). The platform is available as MATLAB code, a Fiji plugin and an Exe application to maximize user-friendliness.


Assuntos
Iluminação , Microscopia , Microscopia/métodos , Iluminação/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
Biochem Biophys Res Commun ; 578: 28-34, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534742

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease and a common dementia in elderly individuals. Previous studies found a strong correlation between axon initial segment (AIS) defects and AD, but it remains unclear whether AD itself changes the arrangement of AIS components, and the mechanisms by which adaptor proteins and ion channels in the AIS are disturbed in AD are not well understood. With super-resolution structured illumination microscopy (SIM) revealing axonal structures, here we imaged the lattice structure of completely assembled AIS in APP/PS1 neurons. By analyzing the images with Gaussian fitting and 1D mean autocorrelation, we found dual spacings (∼200 nm and ∼370 nm) of Ankyrin-G (AnkG), Nav1.2 and ßIV-spectrin in AD model APP/PS1 mice due to the low-expressed 480-kDa AnkG. To identify the roles of each AnkG isoform, two isoforms were separately expressed in neurons from AnkG conditional knockout mice. Mice rescued with 270-kDa AnkG displayed dual spacings of AnkG components in cultured neurons and impaired in spatial memory, while transgenic mice expressing 480-kDa AnkG showed a normal molecular distribution in the AIS and normal cognitive performance. Our findings provide new insight into the mechanisms underlying impaired cognition associated with neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer/patologia , Anquirinas/metabolismo , Axônios/patologia , Cognição/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Espectrina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Anquirinas/genética , Axônios/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Microscopia , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas , Espectrina/genética
4.
Light Sci Appl ; 13(1): 125, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806501

RESUMO

Structured illumination microscopy (SIM) has emerged as a promising super-resolution fluorescence imaging technique, offering diverse configurations and computational strategies to mitigate phototoxicity during real-time imaging of biological specimens. Traditional efforts to enhance system frame rates have concentrated on processing algorithms, like rolling reconstruction or reduced frame reconstruction, or on investments in costly sCMOS cameras with accelerated row readout rates. In this article, we introduce an approach to elevate SIM frame rates and region of interest (ROI) coverage at the hardware level, without necessitating an upsurge in camera expenses or intricate algorithms. Here, parallel acquisition-readout SIM (PAR-SIM) achieves the highest imaging speed for fluorescence imaging at currently available detector sensitivity. By using the full frame-width of the detector through synchronizing the pattern generation and image exposure-readout process, we have achieved a fundamentally stupendous information spatial-temporal flux of 132.9 MPixels · s-1, 9.6-fold that of the latest techniques, with the lowest SNR of -2.11 dB and 100 nm resolution. PAR-SIM demonstrates its proficiency in successfully reconstructing diverse cellular organelles in dual excitations, even under conditions of low signal due to ultra-short exposure times. Notably, mitochondrial dynamic tubulation and ongoing membrane fusion processes have been captured in live COS-7 cell, recorded with PAR-SIM at an impressive 408 Hz. We posit that this novel parallel exposure-readout mode not only augments SIM pattern modulation for superior frame rates but also holds the potential to benefit other complex imaging systems with a strategic controlling approach.

5.
Microsc Res Tech ; 85(7): 2679-2691, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411984

RESUMO

The axon initial segment (AIS) plays an important role in maintaining neuronal polarity and initiating action potentials (APs). The AIS adapts to its environment by changing its length and distance from the cell body, resulting in modulation of neuronal excitability, which is referred to as AIS plasticity. Previous studies found an ~200 nm single periodic distribution of the key AIS components ankyrinG (AnkG), Nav 1.2, and ßIV-spectrin, while it remains unclear how the lattice structure is altered by AIS plasticity. In this study, we found that the length of the AIS significantly increased, resulting in increased neuronal excitability, with high-concentration glucose treatment. Structured illumination microscopy (SIM) images of the lattice structure showed a dual-spacing periodic distribution (~200 nm and ~260 nm) of AnkG, Nav 1.2, and ßIV-spectrin. Moreover, 480-kDa AnkG was crucial for AIS plasticity and increased lattice structure spacing. The discovery of new regulators for modulating AIS plasticity will help us to understand and manipulate the structure and function of the AIS. Glucose triggers axon initial segment (AIS) plasticity of cultured neurons. AIS lattice structure under glucose treatment shows an increased spacing by structured illumination microscopy imaging. 480-kDa AnkG contributes to AIS plasticity.


Assuntos
Segmento Inicial do Axônio , Potenciais de Ação/fisiologia , Segmento Inicial do Axônio/fisiologia , Axônios , Glucose , Espectrina
6.
Light Sci Appl ; 11(1): 4, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974519

RESUMO

The orientation of fluorophores can reveal crucial information about the structure and dynamics of their associated subcellular organelles. Despite significant progress in super-resolution, fluorescence polarization microscopy remains limited to unique samples with relatively strong polarization modulation and not applicable to the weak polarization signals in samples due to the excessive background noise. Here we apply optical lock-in detection to amplify the weak polarization modulation with super-resolution. This novel technique, termed optical lock-in detection super-resolution dipole orientation mapping (OLID-SDOM), could achieve a maximum of 100 frames per second and rapid extraction of 2D orientation, and distinguish distance up to 50 nm, making it suitable for monitoring structural dynamics concerning orientation changes in vivo. OLID-SDOM was employed to explore the universal anisotropy of a large variety of GFP-tagged subcellular organelles, including mitochondria, lysosome, Golgi, endosome, etc. We found that OUF (Orientation Uniformity Factor) of OLID-SDOM can be specific for different subcellular organelles, indicating that the anisotropy was related to the function of the organelles, and OUF can potentially be an indicator to distinguish normal and abnormal cells (even cancer cells). Furthermore, dual-color super-resolution OLID-SDOM imaging of lysosomes and actins demonstrates its potential in studying dynamic molecular interactions. The subtle anisotropy changes of expanding and shrinking dendritic spines in live neurons were observed with real-time OLID-SDOM. Revealing previously unobservable fluorescence anisotropy in various samples and indicating their underlying dynamic molecular structural changes, OLID-SDOM expands the toolkit for live cell research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA