RESUMO
BACKGROUND: Interstitial lung disease (ILD) is a common pulmonary manifestation of rheumatoid arthritis (RA) and is associated with a poor prognosis. However, the role of blood biomarkers in RA-associated interstitial lung disease (RA-ILD) is ill-defined. We aim to evaluate the role of YKL-40 and Krebs von den Lungen-6 (KL-6) in the diagnosis and severity evaluation of RA-ILD. METHODS: 45 RA-non-ILD patients and 38 RA-ILD patients were included. The clinical data and the levels of YKL-40 and KL-6 were measured and collected for all patients. The risk factors for RA-ILD were analyzed and their correlation with relevant indicators and predictive value for RA-ILD was explored. RESULTS: The levels of YKL-40 and KL-6 in RA-ILD patients were higher than RA-non-ILD patients (p < .001). Both YKL-40 and KL-6 were correlated with the incidence of RA-ILD. The predictive power of combined KL-6 and YKL-40 for the presence of ILD was 0.789, with a sensitivity and specificity at 73.7% and 73.3%, respectively. In RA-ILD patients, both YKL-40 and KL-6 were positively correlated with the Scleroderma Lung Study (SLS) I score and negatively correlated with pulmonary function. CONCLUSIONS: KL-6 and YKL-40 might be a useful biomarker in the diagnosis and severity evaluation of RA-ILD.
Assuntos
Artrite Reumatoide , Biomarcadores , Proteína 1 Semelhante à Quitinase-3 , Doenças Pulmonares Intersticiais , Mucina-1 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/complicações , Biomarcadores/sangue , Proteína 1 Semelhante à Quitinase-3/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Mucina-1/sangue , Valor Preditivo dos Testes , Prognóstico , Sensibilidade e Especificidade , Índice de Gravidade de DoençaRESUMO
Dissolved organic matter (DOM), the most reactive fraction of forest soil organic matter, is increasingly impacted by wildfires worldwide. However, few studies have quantified the temporal changes in soil DOM quantity and quality after fire. Here, soil samples were collected after the Qipan Mountain Fire (3-36 months) from pairs of burned and unburned sites. DOM contents and characteristics were analyzed using carbon quantification and various spectroscopic and spectrometric techniques. Compared with the unburned sites, burned sites showed higher contents of bulk DOM and most DOM components 3 months after the fire but lower contents of them 6-36 months after the fire. During the sharp drop of DOM from 3 to 6 months after the fire, carboxyl-rich alicyclic molecule-like and highly unsaturated compounds had greater losses than condensed aromatics. Notably, the burned sites had consistently higher abundances of oxygen-poor dissolved black nitrogen and fluorescent DOM 3-36 months after the fire, particularly the abundance of pyrogenic C2 (excitation/emission maxima of <250/â¼400 nm) that increased by 150% before gradually declining. This study advances the understanding of temporal variations in the effects of fire on different soil DOM components, which is crucial for future postfire environmental management.
Assuntos
Incêndios , Solo , Solo/química , China , Incêndios Florestais , FlorestasRESUMO
Circulating cell-free microRNAs (cfmiRNA) are an emerging class of biomarkers that have shown great promise in the clinical diagnosis, treatment, and monitoring of several pathological conditions, including cancer. However, validation and clinical implementation of cfmiRNA biomarkers has been hindered by the variability introduced during different or suboptimal specimen collection and handling practices. To address the need for standardization and evidence-based guidance, the National Cancer Institute (NCI) developed a new Biospecimen Evidenced-Based Practices (BEBP) document, entitled "Cell-free miRNA (cfmiRNA): Blood Collection and Processing". The BEBP, the fourth in the document series, contains step-by-step procedural guidelines on blood collection, processing, storage, extraction, and quality assessment that are tailored specifically for cfmiRNA analysis of plasma and serum. The workflow outlined in the BEBP is based on the available literature and recommendations of an expert panel. The BEBP contains the level of detail required for development of evidence-based standard operating procedures (SOPs) as well as the flexibility needed to accomodate (i) discovery- and inquiry-based studies and (ii) the different constraints faced by research labs, industry, clinical and academic institutions to foster widespread implementation. Guidance from the expert panel also included recommendations on study design, validating changes in workflow, and suggested quality thresholds to delineate meaningful changes in cfmiRNA levels. The NCI cfmiRNA: Blood Collection and Processing BEBP is available here as supplementary information as well as through the NCI Biorepositories and Biospecimen Research Branch (BBRB) (https://biospecimens.cancer.gov/resources/bebp.asp).
Assuntos
MicroRNA Circulante , Neoplasias , Humanos , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Biomarcadores , Neoplasias/patologiaRESUMO
BACKGROUND: Most guidelines propose inducing labor within 24 h following term (37 or more weeks of gestation) prelabor rupture of membranes (PROM). However, the exact timing for initiating induction within the 24 h period remains unknown. This study aims to comparatively assess the efficacy and safety of the use of vaginal dinoprostone within 6 h versus within 6-24 h for singleton pregnancies with PROM and an unfavorable cervix (Bishop score < 6). METHODS: This was a retrospective cohort study including singleton pregnancies with PROM and an unfavorable cervix (Bishop score < 6) in which labor was induced using vaginal dinoprostone. Women were divided into two groups according to the timing of the use of induction (within 6 h versus within 6-24 h after PROM). Baseline maternal data, maternal and neonatal outcomes were recorded for statistical analysis. RESULTS: 450 women were included, 146 (32.4%) of whom were induced within 6 h of PROM and 304 (67.6%) were induced within 6-24 h. Cesarean delivery rate (15.8% versus 29.3%, p = 0.002) and nonreassuring fetal heart rate tracing (4.8% versus 10.5%, p = 0.043) in group with vaginal dinoprostone within 6 h were significantly lower than those in group with vaginal dinoprostone within 6-24 h. There was no significant differences in terms of duration from IOL to vaginal delivery. CONCLUSION: Induction of labor within 6 h with vaginal dinoprostone after PROM for singleton pregnancies with an unfavorable cervix (Bishop score < 6) significantly associated with less cesarean section, less nonreassuring fetal heart rate tracing, compared to induction of labor within 6-24 h after PROM.
Assuntos
Dinoprostona , Ruptura Prematura de Membranas Fetais , Trabalho de Parto Induzido , Ocitócicos , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Trabalho de Parto Induzido/métodos , Ruptura Prematura de Membranas Fetais/tratamento farmacológico , Adulto , Dinoprostona/administração & dosagem , Administração Intravaginal , Ocitócicos/administração & dosagem , Fatores de Tempo , Colo do Útero , Cesárea/estatística & dados numéricos , Maturidade Cervical/efeitos dos fármacosRESUMO
BACKGROUND: Prader-Willi syndrome (PWS) is a rare multisystemic hereditary illness. Recombinant human growth hormone (rhGH) therapy is widely recognized as the primary treatment for PWS. This study aimed to examine how different PWS genotypes influence the outcome of rhGH treatment in children with PWS. METHODS: A review was conducted on 146 Chinese children with PWS, genetically classified and monitored from 2017 to 2022. Unaltered and modified generalized estimating equations (GEE) were employed to examine the long-term patterns in primary outcomes (growth metrics) and secondary outcomes (glucose metabolism metrics and insulin-like growth factor-1 (IGF-1)) during rhGH therapy. The study also evaluated the prevalence of hypothyroidism, hip dysplasia, and scoliosis before and after rhGH treatment. RESULTS: Children with PWS experienced an increase in height/length standard deviation scores (SDS) following rhGH administration. The impact of rhGH therapy on growth measurements was similar in both the deletion and maternal uniparental diploidy (mUPD) cohorts. Nevertheless, the deletion group was more prone to insulin resistance (IR) compared to the mUPD group. No significant variations in growth metrics were noted between the two groups (P > 0.05). At year 2.25, the mUPD group showed a reduction in fasting insulin (FINS) levels of 2.14 uIU/ml (95% CI, -4.26, -0.02; P = 0.048) and a decrease in homeostasis model assessment of insulin resistance (HOMA-IR) of 0.85 (95% CI, -1.52, -0.17; P = 0.014) compared to the deletion group. Furthermore, there was a decrease in the IGF standard deviation scores (SDS) by 2.84 (95% CI, -4.84, -0.84; P = 0.005) in the mUPD group during the second year. The frequency of hip dysplasia was higher in the mUPD group compared to the deletion group (P < 0.05). CONCLUSIONS: rhGH treatment effectively increased height/length SDS in children with PWS, with similar effects observed in both deletion and mUPD genotypes. Children with mUPD genetype receiving rhGH treatment may experience enhanced therapeutic effects in managing PWS.
Assuntos
Genótipo , Hormônio do Crescimento Humano , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/genética , Hormônio do Crescimento Humano/uso terapêutico , Criança , Feminino , Masculino , Pré-Escolar , Fator de Crescimento Insulin-Like I , Adolescente , Resultado do Tratamento , Proteínas Recombinantes/uso terapêutico , Lactente , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/genética , Resistência à InsulinaRESUMO
BACKGROUND: The clinical value of procalcitonin (PCT) in infection diagnosis and antibiotic stewardship is still unclear. This study aimed to investigate the association between serum PCT and different clinical conditions as well as other infectious/inflammatory parameters in different septic patients in order to elucidate the value of PCT detection in infection management. METHODS: Chemiluminescence immunoassay was used for serum PCT analysis. Hematology analysis was used for complete blood cell count. Digital automated cell morphology analysis was used for blood cell morphology examination. Blood, urine, and stool cultures were performed according to routine clinical laboratory standard operating procedures. C-reactive protein (CRP) was analyzed by immunoturbidimetry. Erythrocyte sedimentation rate test was performed using natural sedimentation methods. RESULTS: Outpatients, ICU patients, and patients under 2 years of age with respiratory infections had higher serum PCT levels. Septic patients had the highest-serum PCT levels and other infection indexes. PCT levels in the blood, urine, and stool culture-positive patients were significantly higher than in culture-negative patients. The neutrophil granulation and reactive lymphocytes were observed together with the PCT-level increments in different septic patients, and these alterations were lessened after treatment. There was no significant change in monocyte morphology between pre- and posttreatment septic patients. CONCLUSIONS: Serum PCT is associated with neutrophil cytotoxicity and lymphocyte morphology changes in sepsis; thus, the combination of neutrophil and lymphocyte digital cell morphology evaluations with PCT detection may be a useful examination for guiding the clinical management of sepsis.
RESUMO
Tannic acid (TA)-derived carbon dots (TACDs) were synthesized for the first time via a solvothermal method using TA as one of the raw materials, which may effectively inhibit amyloid fibril aggregation and disaggregate mature fibril. The fluorescent property of TACDs were modulated by adjusting the ratio of TA to o-phenylenediamine (oPD), and TACDs fabricated with the precursor ratio as 1:1 showed the best fluorescent property. Circular dichroism spectra (CD) showed that the structure of ß-sheet decreased as the concentration of TACDs increased. The inhibition efficiency, as confirmed by thioflavin T (ThT) and transmission electron microscopy (TEM), is extraordinary at 98.16%, whereas disaggregation efficiency is noteworthy at 97.97%, and the disaggregated lysozyme fibrils did not reaggregate after 7 days. More critically, TACDs can also alleviate the cellular toxicity caused by Aß fibrils and improve cell viability. This work offers a new perspective on the design of scavengers for amyloid plaques.
Assuntos
Carbono , Agregados Proteicos , Taninos , Taninos/química , Taninos/farmacologia , Carbono/química , Humanos , Agregados Proteicos/efeitos dos fármacos , Muramidase/química , Muramidase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Pontos Quânticos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Amiloide/metabolismo , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Animais , PolifenóisRESUMO
The aim of this study was to evaluate the effect of nurse-physician collaboration on the incidence of complications, anxiety and depression, quality of life, and satisfaction with nursing care among cervical cancer patients undergoing three-dimensional intracavitary brachytherapy. In this randomized, single-blinded, placebo-controlled trial, 92 eligible cervical cancer patients were equally divided into two groups upon admission. The control group was given routine nursing, and the intervention group received a nurse-physician collaboration in addition to routine care. Anxiety, depression, and health-related quality of life in both groups were assessed and compared at baseline and discharge. The intervention group had significantly fewer complications and showed marked improvements in mental health and quality of life compared to the control group. Satisfaction with nursing care was substantially greater in the intervention group. These results support the clinical adoption of a nurse-physician collaborative care model in the management of cervical cancer with three-dimensional intracavitary brachytherapy.
RESUMO
Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.
RESUMO
Heating temperature (HT) during forest fires is a critical factor in regulating the quantity and quality of pyrogenic dissolved organic matter (DOM). However, the temperature thresholds at which maximum amounts of DOM are produced (TTmax) and at which the DOC gain turns into net DOC loss (TT0) remain unidentified on a component-specific basis. Here, based on solid-state 13C nuclear magnetic resonance, absorbance and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed variations in DOM composition in detritus and soil with HT (150-500 °C) and identified temperature thresholds for components on structural, fluorophoric, and molecular formula levels. TTmax was similar for detritus and soil and ranged between 225 and 250 °C for bulk dissolved organic carbon (DOC) and most DOM components. TT0 was consistently lower in detritus than in soil. Moreover, temperature thresholds differed across the DOM components. As the HT increased, net loss was observed initially in molecular formulas tentatively associated with carbohydrates and aliphatics, then proteins, peptides, and polyphenolics, and ultimately condensed aromatics. Notably, at temperatures lower than TT0, particularly at TTmax, burning increased the DOC quantity and thus might increase labile substrates to fuel soil microbial community. These composition-specific variations of DOM with temperature imply nonlinear and multiple temperature-dependent wildfire impacts on soil organic matter properties.
Assuntos
Matéria Orgânica Dissolvida , Incêndios Florestais , Temperatura , Calefação , Solo/químicaRESUMO
A sensitive and selective molecularly imprinted polymer (MIP) sensor was developed for the determination of amyloid-ß (1-42) (Aß42). The glassy carbon electrode (GCE) was successively modified with electrochemical reduction graphene oxide (ERG) and poly(thionine-methylene blue) (PTH-MB). The MIPs were synthesized by electropolymerization with Aß42 as a template and o-phenylenediamine (o-PD) and hydroquinone (HQ) as functional monomers. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CC), and differential pulse voltammetry (DPV) were used to study the preparation process of the MIP sensor. The preparation conditions of the sensor were investigated in detail. In optimal experimental conditions, the response current of the sensor was linear in the range of 0.12-10 µg mL-1 with a detection limit of 0.018 ng mL-1. The MIP-based sensor successfully detected Aß42 in commercial fetal bovine serum (cFBS) and artificial cerebrospinal fluid (aCSF).
Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Hidroquinonas , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Polímeros Molecularmente Impressos , Eletrodos , Limite de DetecçãoRESUMO
OBJECTIVES: Optical Coherence Tomograph (OCT) imaging technology can be used to examine, in vivo, the human ET. At present, it is impossible to achieve the OCT scanning vivo and ex vivo in the same individual human body, or study the consistency between OCT images and histological images of the eustachian tube nasopharyngeal region and adjacent structures. The aim of this study was to determine the consistency between OCT images and histological sections in vivo and ex vivo in miniature pigs. METHODS: OCT imaging was performed on five adult miniature pigs in vivo and ex vivo. The images of the eustachian tube OCT (ET-OCT), nasopharynx OCT (NP-OCT) and histological cross sections were further studied. RESULTS: All five miniature pigs achieved the OCT scan successfully, acquiring ET-OCT and NP-OCT images in vivo and ex vivo on both sides. The acquired ET OCT images closely matched the histological images, revealing details of the cartilage, submucosa, glands, and mucosa. The lower segment of the ET wall mucosa had an abundance of glands and submucosal tissues, with more low-signal areas appearing in the ex vivo images. The NP-OCT images of the nasopharynx matched the details of the mucosa and submucosal tissues. The ex-vivo OCT images showed thicker mucosa and more scattered slightly lower signal areas compared to the vivo OCT images. CONCLUSIONS: ET-OCT images and NP-OCT images matched the histological structure of eustachian tube nasopharyngeal region structures in miniature pigs both in vivo and ex vivo. OCT images may be sensitive to changes in edema and ischemia status. There is a great potential for morphological assessment of inflammation, edema, injure, mucus gland status.
Assuntos
Tuba Auditiva , Adulto , Suínos , Humanos , Animais , Tuba Auditiva/diagnóstico por imagem , Porco Miniatura , Tomografia de Coerência Óptica/métodos , Inflamação , Nasofaringe/diagnóstico por imagemRESUMO
Rock-Eval pyrolysis and the biomarker composition of organic matter were systematically studied in hydrate-bearing sediments from the Shenhu area, South China Sea. The n-alkane distribution patterns revealed that the organic matter in the sediments appeared to originate from mixed sources of marine autochthonous input, terrestrial higher plants, and ancient reworked organic matter. The low total organic carbon contents (average < 0.5%) and the low hydrogen index (HI, <80 mg HC/g TOC) suggested the poor hydrocarbon-generation potential of the deposited organic matter at a surrounding temperature of <20 °C in unconsolidated sediments. The abnormally high production index and the fossil-originated unresolved complex mixture (UCM) accompanied by sterane and hopane of high maturity indicated the contribution of deep hydrocarbon reservoirs. Preliminary oil-to-source correlation for the extracts implied that the allochthonous hydrocarbons in the W01B and W02B sediments might have originated from the terrestrial source rocks of mature Enping and Wenchang formations, while those of W03B seem to be derived from more reduced and immature marine source rocks such as the Zhuhai formation. The results of the organic extracts supported the previous identification of source rocks based on the isotopic composition of C2+ hydrate-bound gases. The biomarker of methanogens, squalane, was recognized in the sediments of this study, possibly suggesting the generation of secondary microbial gases which are coupled with the biodegradation of the deep allochthonous hydrocarbons.
Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Biomarcadores , China , Monitoramento Ambiental/métodos , Gases , Sedimentos Geológicos/química , Hidrocarbonetos/análise , Poluentes Químicos da Água/análiseRESUMO
Atherosclerosis in diabetes is a leading cause of cardiovascular complications. Intermedin (IMD) is a calcitonin peptide that is known to inhibit macrophage phagocytosis in atherosclerosis, but the exact mechanism is unclear. We investigate genes that are differentially expressed in response to IMD in hyperglycemic conditions and determine whether they delay the progression of atherosclerosis. An atherosclerotic and diabetic-murine model was generated in 8-week-old male ApoE-/- mice receiving streptozotocin and a high-fat diet. The mouse model was treated with IMD and the expression levels of NF-κB, Dnm3os, miR-27b-3p, and SLAMF7 were detected in plaque tissue and macrophages cultured with high glucose concentrations. Phagocytosis was determined by oxidized-low-density lipoprotein (Ox-LDL) uptake and the interactions among Dnm3os, SLAMF7 and miR-27b-3p were assessed by dual-luciferase reporter assays. The expression of NF-κB, Dnm3os, and SLAMF7 was enhanced in atherosclerotic plaques but decreased by IMD. The suppression of Dnm3os reduced plaque formation in IMD-treated mice even further whereas increased by miR-27b-3p. Dnm3os and SLAMF7 were competitively bind to miR-27b-3p in vivo. In vitro, ox-LDL uptake is elevated in macrophages cultured in hyperglycemic conditions but reduced by IMD. Dual-luciferase assays indicate that Dnm3os positively regulates SLAMF7 through miR-27b-3p expression. In conclusion, Dnm3os is involved in macrophage phagocytosis through the competitive binding of SLAMF7 with miR-27b-3p. IMD induces the suppression of Dnm3os to inhibit macrophage phagocytosis and alleviate atherosclerosis in diabetes.
RESUMO
BACKGROUND: We performed a prospective multicentre diagnostic study to evaluate the combined interferon-γ (IFN-γ) and interleukin-2 (IL-2) release assay for detect active pulmonary tuberculosis (TB) in China. METHODS: Adult patients presenting symptoms suggestive of pulmonary TB were consecutively enrolled in three TB-specialized hospitals. Sputum specimens and blood sample and were collected from each participant at enrolment. The levels of Mycobacterium tuberculosis (MTB)-specific antigen-stimulated IFN-γ and IL-2 were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS: Between July 2017 and December 2018, a total of 3245 patients with symptoms suggestive of pulmonary TB were included in final analysis. Of 3245 patients, 2536 were diagnosed as active TB, consisting of 1092 definite TB and 1444 clinically diagnosed TB. The overall sensitivity and specificity of IFN-γ were 83.8% and 81.5%, respectively. In addition, compared with IFN-γ, the specificity of IL-2 increased to 94.3%, while the sensitivity decreased to 72.6%. In addition, the highest sensitivity was achieved with parallel combination of IFN-γ/IL-2, with a sensitivity of 87.9%, and its overall specificity was 79.8%. The sensitivity of series combination test was 68.5%. Notably, the sensitivity of series combination test in definite TB (72.1%) was significantly higher than that in clinically diagnosed TB (65.8%). CONCLUSION: In conclusion, we develop a new immunological method that can differentiate between active TB and other pulmonary diseases. Our data demonstrates that the various IFN-γ/IL-2 combinations provides promising alternatives for diagnosing active TB cases in different settings. Additionally, the diagnostic accuracy of series combination correlates with severity of disease in our cohort.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Antígenos de Bactérias , China , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama , Testes de Liberação de Interferon-gama , Interleucina-2 , Estudos Prospectivos , Tuberculose Pulmonar/diagnósticoRESUMO
Engineering nanoheterostructures (NHs) plays a key role in exploring novel or enhanced physicochemical properties of nanocrystals. Despite previously reported synthetic methodologies, selective synthesis of NHs to achieve the anticipated composition and interface is still challenging. Herein, we presented a colloidal strategy for the regioselective construction of typical Ag-Co2P NHs with precisely controlled location of Ag nanoparticles (NPs) on unique chemically transformed Co2P nanorods (NRs) by simply changing the ratio of different surfactants. As a proof-of-concept study, the constructed heterointerface-dependent hydrogen evolution reaction (HER) catalysis was demonstrated. The multiple Ag NP-tipped Co2P NRs exhibited the best HER performance, due to their more exposed active sites and the synergistic effect at the interfaces. Our results open up new avenues in rational design and fabrication of NHs with delicate control over the spatial distribution and interfaces between different components.
RESUMO
Carbon quantum dots (CQDs) are drawing tremendous attention due to their unique photoluminescence property and fascinating functions. Herein, we prepared novel CQDs functionalized with amino acids (AA-CQDs) by a one-pot hydrothermal method for selective detection of Al3+ ions and fluorescence imaging. The prepared AA-CQDs exhibit a novel triple-excitation and single-colour emission for fluorescent property. In addition, the AA-CQDs have a high absolute quantum yield (24.23%) and quantum lifetime (13.29 ns). Moreover, the AA-CQDs exhibit high selectivity and sensitivity for Al3+ by fluorescence enhancement. In pH 7.4 PBS solution, there was a good linear relation between the fluorescence intensity and the concentration of Al3+ in the range of 1-20 µmol L-1; the limit of detection (3σ) was only 0.32 µmol L-1. Furthermore, an AA-CQD probe was also utilized for detection of Al3+ in living cells based on excellent biocompatibility and endocytosis. Based on the concentration of Al3+ ions in cells and apoptosis data, there will be a quick reflect of apoptosis induced by aluminium ions via the fluorescence intensity of the AA-CQD probe. This work will set the stage for developing novel CQD-based biosensors in cell research.
Assuntos
Alumínio/análise , Aminoácidos/química , Carbono/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Células A549 , Humanos , Limite de Detecção , Microscopia de Força Atômica , Microscopia Eletrônica de TransmissãoRESUMO
Proteins, like actors, play different roles in specific applications. In the past decade, significant achievements have been made in protein-engineered biomedicine for cancer therapy. Certain proteins such as human serum albumin, working as carriers for drug/photosensitizer delivery, have entered clinical use due to their long half-life, biocompatibility, biodegradability, and inherent nonimmunogenicity. Proteins with catalytic abilities are promising as adjuvant agents for other therapeutic modalities or as anticancer drugs themselves. These catalytic proteins are usually defined as enzymes with high biological activity and substrate specificity. However, clinical applications of these kinds of proteins remain rare due to protease-induced denaturation and weak cellular permeability. Based on the characteristics of different proteins, tailor-made protein-based nanosystems could make up for their individual deficiencies. Therefore, elaborately designed protein-based nanosystems, where proteins serve as drug carriers, adjuvant agents, or therapeutic drugs to make full use of their intrinsic advantages in cancer therapy, are reviewed. Up-to-date progress on research in the field of protein-based nanomedicine is provided.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológicoRESUMO
OBJECTIVE: To evaluate ß-cell function in obese children and adolescents meeting clinical criteria for isolated obesity (iOB), isolated components of dysmetabolism (cMD), or metabolic syndrome (MS), and in obese children and adolescents with normal glucose tolerance (NGT), impaired glucose regulation (IGR), or type 2 diabetes (T2DM). STUDY DESIGN: We undertook a prospective study of Han Chinese children and adolescents aged 8-16 years (median 11 ± 1.4) seen in an obesity clinic between May 2013 and 2018. Patients were classified as iOB (53), cMD (139), and MS (139) groups based on clinical criteria. The same patients were also classified as NGT (212), IGR (111), or T2DM (8) based on results of an oral glucose tolerance test (OGTT). The MS patients were classified as NGT [MS](59) and IGR [MS](72) for the further study. All participants also completed a mixed-meal tolerance test (MMTT). RESULTS: Compared with the iOB group, the MS group had significantly higher area under the curve of C-peptide up to the 2 hours (AUC CP) (P = .03) and peak C-peptide (P = .03), adjusted for BMI, age and Tanner stage, on MMTT. However, there was no difference in the insulinogenic index (ΔI30/ΔG30) or oral disposition index (oDI) derived from the OGTT among the three groups. However, 52% of participants with MS had IGR, compared to 28% in the cMD group. Compared with the NGT group, the individuals with IGR had significantly lower ΔI30/ΔG30 (P = .001) and oDI (P < .001). Compared with the iOB group, the NGT[MS] had significantly higher AUC CP (P = .004), peak C-peptide (P = .004) and ΔI30/ΔG30 (P = .007) adjusted for age, but no difference in oDI. Compared with the NGT[MS], the IGR[MS] had significantly lower ΔI30/ΔG30 (P = .005) and oDI (P < .001), but the AUC CP and peak C-peptide had no difference. CONCLUSION: Although the MS youth have ß-cell hyperfunction as a whole, ß-cell dysfunction is present in the early stages of dysmetabolism in obese youth with cMD or MS and worsened across the spectrum from iOB to cMD and MS, contributing to development of T2DM.
Assuntos
Células Secretoras de Insulina/fisiologia , Síndrome Metabólica/complicações , Síndrome Metabólica/fisiopatologia , Obesidade Infantil/complicações , Obesidade Infantil/fisiopatologia , Adolescente , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Intolerância à Glucose/complicações , Intolerância à Glucose/fisiopatologia , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Estudos ProspectivosRESUMO
Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.