Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
FASEB J ; 36(3): e22213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192728

RESUMO

High-risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high-risk primary and recurrent disease are distinct: in newly diagnosed patients, non-response to therapy is often associated with a higher level of tumor "stemness" paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non-curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2-mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F-108 (PF108), these features translated into rapid tumor regression and long-term survival in models of both ABCG2-overexpressing and p53-mutant high-risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier-drug association integrated into the design of the hydrolytically activatable PF108-[SN22]2  have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo-naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier-based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high-risk neuroblastoma, PF108-[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug-resistant disease presently lacking effective treatment options.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Poloxâmero/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Inibidores da Topoisomerase I/química
2.
Wound Repair Regen ; 31(1): 120-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36053849

RESUMO

Robust and predictive pre-clinical models of recalcitrant diabetic wounds are critical for advancing research efforts toward improving healing. Murine models have logistic and genetic benefits versus larger animals; however, native murine healing inadequately represents clinically recalcitrant wounds in humans. Furthermore, current humanization techniques employing devices, deleterious mutations or chemical agents each carry model-specific limitations. To better replicate human wounds in a mouse, we developed a novel wound-edge inversion (WEI) technique that mimics the architecture of epibole and mitigates contracture, epithelialization, and consequently wound closure. In this study, we evaluated the reliability and durability of the WEI model in wild-type and obese diabetic mice and compared to healing after (i) punch biopsy, (ii) mechanical/silicone stenting or (iii) exogenous oxidative stressors. In wild-type mice, WEI demonstrated favourable closure characteristics compared to both control and stented wounds, however, wounds progressed to closure by 4 weeks. In contrast, diabetic WEI wounds persisted for 6-10 weeks with reduced contracture and epithelialization. In both diabetic and wild-type mice, WEI sites demonstrated persistence of inflammatory populations, absence of epithelialization, and histologic presence of alpha-SMA positive granulation tissue when compared to controls. We conclude that the WEI technique is particularly valuable for modelling recalcitrant diabetic wounds with sustained inflammation and dysfunctional healing.


Assuntos
Diabetes Mellitus Experimental , Cicatrização , Camundongos , Humanos , Animais , Diabetes Mellitus Experimental/patologia , Reprodutibilidade dos Testes , Pele/patologia , Reepitelização
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686226

RESUMO

Food bioactive peptides are well recognized for their health benefits such as antimicrobial, antioxidant, and antihypertensive benefits, among others. Their drug-like behavior has led to their potential use in targeting skin-related aging factors like the inhibition of enzymes related with the skin-aging process. In this study, canary seed peptides (CSP) after simulated gastrointestinal digestion (<3 kDa) were fractioned by RP-HPLC and their enzyme-inhibition activity towards elastase and tyrosinase was evaluated in vitro. CSP inhibited elastase (IC50 = 6.2 mg/mL) and tyrosinase (IC50 = 6.1 mg/mL), while the hydrophobic fraction-VI (0.2 mg/mL) showed the highest inhibition towards elastase (93%) and tyrosinase (67%). The peptide fraction with the highest inhibition was further characterized by a multilevel in silico workflow, including physicochemical descriptor calculations, antioxidant activity predictions, and molecular dynamics-ensemble docking towards elastase and tyrosinase. To gain insights into the skin permeation process during molecular dynamics simulations, based on their docking scores, five peptides (GGWH, VPPH, EGLEPNHRVE, FLPH, and RPVNKYTPPQ) were identified to have favorable intermolecular interactions, such as hydrogen bonding of polar residues (W, H, and K) to lipid polar groups and 2-3 Å van der Waals close contact of hydrophobic aliphatic residues (P, V, and L). These interactions can play a critical role for the passive insertion of peptides into stratum corneum model skin-membranes, suggesting a promising application of CSP for skin-aging treatments.


Assuntos
Monofenol Mono-Oxigenase , Phalaris , Simulação de Dinâmica Molecular , Elastase Pancreática , Sementes , Antioxidantes/farmacologia
4.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834378

RESUMO

Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.


Assuntos
Disruptores Endócrinos , Melatonina , Masculino , Ratos , Animais , Melatonina/farmacologia , Vitaminas , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Reprodução , Receptores de Estrogênio , Vitamina A , Vitamina K , Testosterona/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química
5.
Int J Cosmet Sci ; 45(6): 699-724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402111

RESUMO

The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.


Le terme biopolymère fait référence aux matériaux obtenus par modification chimique des substances biologiques naturelles ou ceux qui surviennent des processus biotechnologiques. Ils sont biodégradables, biocompatibles, et non-toxiques. Du à leur avantages, les biopolymères ont de larges applications dans les cosmétiques conventionnels ainsi que dans les nouvelles tendances, et se placent comme des ingrédients essentiels qui peut être utilise comme modificateurs rhéologiques, émulsifiants, producteurs de films, humectants, hydratants, antimicrobiens, et, plus récemment, comme matériaux avec activité métabolique sur la peau. Le développement d'approches compte tenu de ces caractéristiques constitue un défi pour la création de produits de soins capillaires, dermatologiques et buccodentaires. Cet article présente une vision sur l'utilisation des principaux biopolymères dans les produits cosmétiques, et décrit leurs sources, leur structures dérivées, les nouvelles applications, ainsi que les aspects de sécurité lies à leur utilisation comme molécules cosmétiques.


Assuntos
Cosméticos , Biopolímeros/química , Emulsificantes
6.
Aesthet Surg J ; 43(6): NP449-NP465, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36611261

RESUMO

BACKGROUND: Autologous fat grafting, although broadly indicated, is limited by unsatisfactory retention and often requires multiple procedures to achieve durable outcomes. Graft survival is strongly influenced by the magnitude and duration of post-engraftment ischemia. Calcitriol is a pleiotropic, safe nutrient with cell-specific influence on viability and metabolic flux. OBJECTIVES: Evaluate the efficacy of activated vitamin D3 (calcitriol) in improving grafting outcomes and examine its mechanisms. METHODS: Lipoaspirate was collected for ex vivo culture (7 unique donors), in vitro bioenergetic analysis (6 unique donors), and in vivo transplantation (5 unique donors). Ex vivo samples were incubated for up to 2 weeks before extraction of the stromal vascular fraction (SVF) for viability or flow cytometry. SVF was collected for Seahorse (Agilent; Santa Clara, CA) analysis of metabolic activity. Human endothelial cell lines were utilized for analyses of endothelial function. In vivo, samples were implanted into athymic mice with calcitriol treatment either (1) once locally or (2) 3 times weekly via intraperitoneal injection. Grafts were assessed photographically, volumetrically, and histologically at 1, 4, and 12 weeks. Hematoxylin and eosin (H&E), Sirius red, perilipin, HIF1α, and CD31 tests were performed. RESULTS: Calcitriol-treated lipoaspirate demonstrated dose-dependent increases in SVF viability and metabolic reserve during hypoxic stress. Calcitriol treatment enhanced endothelial mobility ex vivo and endothelial function in vitro. In vivo, calcitriol enhanced adipocyte viability, reduced fibrosis, and improved vascularity. Continuous calcitriol was sufficient to improve graft retention at 12 weeks (P < .05). CONCLUSIONS: Calcitriol increased fat graft retention in a xenograft model. Calcitriol has potential to be a simple, economical means of increasing fat graft retention and long-term outcomes.


Assuntos
Tecido Adiposo , Calcitriol , Camundongos , Animais , Humanos , Tecido Adiposo/transplante , Calcitriol/farmacologia , Colecalciferol/farmacologia , Xenoenxertos , Adipócitos/transplante , Modelos Animais de Doenças , Sobrevivência de Enxerto
7.
Intervirology ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455522

RESUMO

BACKGROUND: Emerging virus infections provoke health problems in people and animals, which generate social, and economic issues worldwide. This has spurred the search for new pharmacological strategies to confront them. SUMMARY: The purpose of this review is to draw the reader's attention to pharmacological evaluations of glycyrrhizic acid (GA) and its analogs on the broad range of viruses known in human and veterinary medicine. GA is the main water-soluble constituent extracted from the roots of plants from the genus Glycyrrhiza, commonly known as licorice root. It has long been used due to its broad spectrum of bioactivities, including anti-inflammatory, antiulcer, and antitumor properties. It has also been proposed as an antiviral agent. Medicines derived from GA are currently being used to combat acute and chronic hepatitis and herpes viruses. KEY MESSAGES: This review suggests that GA could be a new broad-spectrum antiviral due to its ability to inhibit DNA or RNA viruses both in vitro and in vivo. GA could be a potential drug for preventing and/or treating various viral diseases.

8.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163672

RESUMO

Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.


Assuntos
Camptotecina/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Tocoferóis/uso terapêutico , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Fatores de Risco , Análise de Sobrevida , Tocoferóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500284

RESUMO

Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.


Assuntos
Anti-Infecciosos , Produtos da Carne , Óleos Voláteis , Óleos Voláteis/farmacologia , Conservantes de Alimentos/farmacologia , Carne/análise , Anti-Infecciosos/farmacologia , Conservação de Alimentos/métodos
10.
Transp Policy (Oxf) ; 115: 113-125, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34803246

RESUMO

This paper analyses the changes on the maritime network before and after the Covid-19 outbreak. Using a large sample of vessel movements between ports, we show a decrease in the global maritime connectivity and significant differences between ports and inter-port links. Furthermore, we find that Covid-19 mitigation measures implemented by governments affected regional port hierarchies differently, with a reduction in port concentration in Europe and Africa and an increase in Asia and North America. Globally, very large ports and small but densely inter-connected ones resisted better to the crisis than the others, while small transshipment hubs and bridges appear to have been more negatively impacted. These findings have implications for the design of more resilient port strategies and transport policies by states and firms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA