Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 1): 242-250, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601943

RESUMO

The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.


Assuntos
Fótons , Radiografia , Raios X
2.
Ultramicroscopy ; 109(9): 1144-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541421

RESUMO

The advantages of backthinning monolithic active pixel sensors (MAPS) based on complementary metal oxide semiconductor (CMOS) direct electron detectors for electron microscopy have been discussed previously; they include better spatial resolution (modulation transfer function or MTF) and efficiency at all spatial frequencies (detective quantum efficiency or DQE). It was suggested that a 'thin' CMOS detector would have the most outstanding properties [1-3] because of a reduction in the proportion of backscattered electrons. In this paper we show, theoretically (using Monte Carlo simulations of electron trajectories) and experimentally that this is indeed the case. The modulation transfer functions of prototype backthinned CMOS direct electron detectors have been measured at 300keV. At zero spatial frequency, in non-backthinned 700-mum-thick detectors, the backscattered component makes up over 40% of the total signal but, by backthinning to 100, 50 or 35mum, this can be reduced to 25%, 15% and 10%, respectively. For the 35mum backthinned detector, this reduction in backscatter increases the MTF by 40% for spatial frequencies between 0.1 and 1.0 Nyquist. As discussed in the main text, reducing backscattering in backthinned detectors should also improve DQE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA