Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 73(18): 6115-6132, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35639812

RESUMO

Small secreted peptides have been described as key contributors to complex signalling networks that control plant development and stress responses. The Brassicaceae-specific PROSCOOP family encodes precursors of Serine riCh endOgenOus Peptides (SCOOPs). In Arabidopsis SCOOP12 has been shown to promote the defence response against pathogens and to be involved in root development. Here, we explore its role as a moderator of Arabidopsis primary root development. We show that the PROSCOOP12 null mutation leads to longer primary roots through the development of longer differentiated cells while PROSCOOP12 overexpression induces dramatic plant growth impairments. In comparison, the exogenous application of synthetic SCOOP12 peptide shortens roots through meristem size and cell length reductions. Moreover, superoxide anion (O2·-) and hydrogen peroxide (H2O2) production in root tips vary according to SCOOP12 abundance. By using reactive oxygen species scavengers that suppress the proscoop12 phenotype, we showed that root growth regulation by SCOOP12 is associated with reactive oxygen species metabolism. Furthermore, our results suggest that peroxidases act as potential SCOOP12 downstream targets to regulate H2O2 production, which in turn triggers cell wall modifications in root. Finally, a massive transcriptional reprogramming, including the induction of genes from numerous other pathways, including ethylene, salicylic acid, and glucosinolates biosynthesis, was observed, emphasizing its dual role in defence and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Glucosinolatos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Divisão Celular , Homeostase , Peptídeos/metabolismo , Ácido Salicílico/metabolismo , Peroxidases/genética , Serina/metabolismo
2.
J Exp Bot ; 70(4): 1349-1365, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30715439

RESUMO

Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/imunologia , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Família Multigênica , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Raízes de Plantas/genética , Transdução de Sinais
3.
BMC Plant Biol ; 16(1): 201, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630120

RESUMO

BACKGROUND: Fruit quality depends on a series of biochemical events that modify appearance, flavour and texture throughout fruit development and ripening. Cell wall polysaccharide remodelling largely contributes to the elaboration of fleshy fruit texture. Although several genes and enzymes involved in cell wall polysaccharide biosynthesis and modifications are known, their coordinated activity in these processes is yet to be discovered. RESULTS: Combined transcriptomic and biochemical analyses allowed the identification of putative enzymes and related annotated members of gene families involved in cell wall polysaccharide composition and structural changes during apple fruit growth and ripening. The early development genes were mainly related to cell wall biosynthesis and degradation with a particular target on hemicelluloses. Fine structural evolutions of galactoglucomannan were strongly correlated with mannan synthase, glucanase (GH9) and ß-galactosidase gene expression. In contrast, fewer genes related to pectin metabolism and cell expansion (expansin genes) were observed in ripening fruit combined with expected changes in cell wall polysaccharide composition. CONCLUSIONS: Hemicelluloses undergo major structural changes particularly during early fruit development. The high number of early expressed ß-galactosidase genes questions their function on galactosylated structures during fruit development and storage. Their activity and cell wall substrate remains to be identified. Moreover, new insights into the potential role of peroxidases and transporters, along with cell wall metabolism open the way to further studies on concomitant mechanisms involved in cell wall assembly/disassembly during fruit development and storage.


Assuntos
Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/genética , Polissacarídeos/metabolismo , Parede Celular/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Malus/crescimento & desenvolvimento , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 164(4): 1930-51, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24550240

RESUMO

Apple (Malus × domestica) trees naturally produce an excess of fruitlets that negatively affect the commercial value of fruits brought to maturity and impact their capacity to develop flower buds the following season. Therefore, chemical thinning has become an important cultural practice, allowing the selective removal of unwanted fruitlets. As the public pressure to limit the use of chemical agents increases, the control of thinning becomes a major issue. Here, we characterized the self-thinning capacity of an apple hybrid genotype from the tree scale to the molecular level. Additional amphivasal vascular bundles were identified in the pith of pedicels supporting the fruitlets with the lowest abscission potential (central fruitlet), indicating that these bundles might have a role in the acquisition of dominance over lateral fruitlets. Sugar content analysis revealed that central fruitlets were better supplied in sorbitol than lateral fruitlets. Transcriptomic profiles allowed us to identify genes potentially involved in the overproduction of vascular tissues in central pedicels. In addition, histological and transcriptomic data permitted a detailed characterization of abscission zone development and the identification of key genes involved in this process. Our data confirm the major role of ethylene, auxin, and cell wall-remodeling enzymes in abscission zone formation. The shedding process in this hybrid appears to be triggered by a naturally exacerbated dominance of central fruitlets over lateral ones, brought about by an increased supply of sugars, possibly through additional amphivasal vascular bundles. The characterization of this genotype opens new perspectives for the selection of elite apple cultivars.


Assuntos
Frutas/anatomia & histologia , Frutas/fisiologia , Malus/anatomia & histologia , Malus/fisiologia , Feixe Vascular de Plantas/fisiologia , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização Genética , Cinética , Malus/genética , Modelos Biológicos , Fenótipo , Polinização/fisiologia , Árvores/anatomia & histologia , Árvores/genética , Árvores/fisiologia
5.
Nat Plants ; 9(12): 2085-2094, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38049516

RESUMO

Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Proteínas de Arabidopsis/genética , Serina , Arabidopsis/fisiologia , Peptídeos , Proteínas Quinases/genética , Receptores de Superfície Celular/genética
6.
Front Plant Sci ; 13: 852808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401621

RESUMO

Initiation of plant immune signaling requires recognition of conserved molecular patterns from microbes and herbivores by plasma membrane-localized pattern recognition receptors. Additionally, plants produce and secrete numerous small peptide hormones, termed phytocytokines, which act as secondary danger signals to modulate immunity. In Arabidopsis, the Brassicae-specific SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) family consists of 14 members that are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2). Recognition of SCOOP peptides elicits generic early signaling responses but knowledge on how and if SCOOPs modulate specific downstream immune defenses is limited. We report here that depletion of MIK2 or the single PROSCOOP12 precursor results in decreased Arabidopsis resistance against the generalist herbivore Spodoptera littoralis but not the specialist Pieris brassicae. Increased performance of S. littoralis on mik2-1 and proscoop12 is accompanied by a diminished accumulation of jasmonic acid, jasmonate-isoleucine and indolic glucosinolates. Additionally, we show transcriptional activation of the PROSCOOP gene family in response to insect herbivory. Our data therefore indicate that perception of endogenous SCOOP peptides by MIK2 modulates the jasmonate pathway and thereby contributes to enhanced defense against a generalist herbivore.

7.
Plants (Basel) ; 11(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559666

RESUMO

The Arabidopsis PROSCOOP genes belong to a family predicted to encode secreted pro-peptides, which undergo maturation steps to produce peptides named SCOOP. Some of them are involved in defence signalling through their perception by a receptor complex including MIK2, BAK1 and BKK1. Here, we focused on the PROSCOOP10 gene, which is highly and constitutively expressed in aerial organs. The MS/MS analyses of leaf apoplastic fluids allowed the identification of two distinct peptides (named SCOOP10#1 and SCOOP10#2) covering two different regions of PROSCOOP10. They both possess the canonical S-X-S family motif and have hydroxylated prolines. This identification in apoplastic fluids confirms the biological reality of SCOOP peptides for the first time. NMR and molecular dynamics studies showed that the SCOOP10 peptides, although largely unstructured in solution, tend to assume a hairpin-like fold, exposing the two serine residues previously identified as essential for the peptide activity. Furthermore, PROSCOOP10 mutations led to an early-flowering phenotype and increased expression of the floral integrators SOC1 and LEAFY, consistent with the de-regulated transcription of PROSCOOP10 in several other mutants displaying early- or late-flowering phenotypes. These results suggest a role for PROSCOOP10 in flowering time, highlighting the functional diversity within the PROSCOOP family.

8.
Sci Rep ; 10(1): 6180, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277099

RESUMO

Superficial scald is one of the most serious postharvest physiological disorders that can affect apples after a prolonged cold storage period. This study investigated the impact of pre- and post-harvest climatic variations on superficial scald in a susceptible apple cultivar. Fruit batches with contrasting phenotypes for superficial scald incidence were identified among several years of "Granny Smith" fruit production. The "low scald" year pre-harvest climate was characterised by a warm period followed by a sudden decrease in temperature, playing the part of an in vivo acclimation to cold storage. This was associated with many abiotic stress responsive genes which were induced in fruit peel. In particular 48 Heat Shock Proteins (HSPs) and 5 Heat Shock transcription Factors (HSFs) were strongly induced at harvest when scald incidence was low. For "high scald" year, a post-harvest acclimation of 1 week was efficient in reducing scald incidence. Expression profiles of stress related genes were affected by the acclimation treatment and indicate fruit physiological adaptations to cold storage. The identified stress-responsive genes, and in particular HSPs, could be useful indicators of the fruit physiological status to predict the risk of scald occurrence as early as harvest.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa/efeitos adversos , Conservação de Alimentos , Malus/fisiologia , Doenças das Plantas/prevenção & controle , Clima , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico/genética , Incidência , Doenças das Plantas/estatística & dados numéricos , Estresse Fisiológico , Fatores de Transcrição/metabolismo
9.
Food Funct ; 9(11): 5855-5867, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30358797

RESUMO

Epidemiological studies reported that apple consumption is associated with a decrease of cardiovascular and metabolic dysfunction, probably due to the polyphenols and fibers present in this fruit. The storage conditions and genetic origin of apples have been reported to influence their content and, as a consequence, their pharmacological properties. The present study evaluated the influence of varieties and storage conditions of traditional and highly appreciated apples including Gala, Golden Delicious, Granny Smith and Pink Lady varieties after harvest and storage under classic cold conditions, under a controlled atmosphere, or under extreme ultra-low oxygen conditions. Thus, a multi-parametric screening on cell models associated with vascular and metabolic dysfunctions - such as endothelial and smooth muscle cells, hepatocytes, adipocytes and macrophages - in relation to the apple polyphenol content has been developed. This strategy demonstrated that, overall, peeled apple samples exhibited a vascular tropism and acted mainly on proliferation and oxidative stress in endothelial and smooth muscle cells. Apple extracts appeared to be less effective on adipocytes and macrophages, but they exhibited antioxidant properties in hepatocytes. Among the varieties, Gala and Golden Delicious were the most efficient against the processes involved in the development of atherosclerosis. Concerning storage conditions, most of the apple varieties were more efficient under harvest conditions, while they could not be discriminated under all other cold conditions and the concentration used, except for the Gala samples. Interestingly, pharmacological properties were associated with the polyphenol profiles of freeze dried apple flesh powder. The present report revealed the potential use of some apple extracts as effective food supplements or nutraceuticals for the prevention and/or management of cardiovascular and metabolic diseases.


Assuntos
Armazenamento de Alimentos , Frutas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Malus/química , Miócitos de Músculo Liso/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta , Análise de Alimentos , Manipulação de Alimentos , Liofilização , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Malus/classificação , Camundongos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Pós , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA