Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 580(7801): 87-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238927

RESUMO

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica Populacional
2.
Proc Natl Acad Sci U S A ; 120(43): e2307129120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844247

RESUMO

The ability of echolocating toothed whales to detect and classify prey at long ranges enables efficient searching and stalking of sparse prey in these time-limited dives. However, nonecholocating deep-diving seals such as elephant seals appear to have much less sensory advantage over their prey. Both elephant seals and their prey rely on visual and hydrodynamic cues that may be detectable only at short ranges in the deep ocean, leading us to hypothesize that elephant seals must adopt a less efficient reactive mode of hunting that requires high prey densities. To test that hypothesis, we deployed high-resolution sonar and movement tags on 25 females to record simultaneous predator and prey behavior during foraging interactions. We demonstrate that elephant seals have a sensory advantage over their prey that allows them to potentially detect prey 5 to 10 s before striking. The corresponding prey detection ranges of 7 to 17 m enable stealthy approaches and prey-specific capture tactics. In comparison, prey react at a median range of 0.7 m, close to the neck extension range of striking elephant seals. Estimated search swathes of 150 to 900 m2 explain how elephant seals can locate up to 2,000 prey while swimming more than 100 km per day. This efficient search capability allows elephant seals to subsist on prey densities that are consonant with the deep scattering layer resources estimated by hydroacoustic surveys but which are two orders of magnitude lower than the prey densities needed by a reactive hunter.


Assuntos
Comportamento Predatório , Focas Verdadeiras , Animais , Feminino , Comportamento Alimentar , Movimento , Natação , Cetáceos
3.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634142

RESUMO

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Assuntos
Otárias , Comportamento Predatório , Focas Verdadeiras , Animais , Otárias/fisiologia , Feminino , Focas Verdadeiras/fisiologia , Regiões Antárticas , Acústica , Reação de Fuga/fisiologia
4.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326219

RESUMO

Among pinnipeds, southern elephant seals (SESs, Mirounga leonina) are extreme divers that dive deeply and continuously along foraging trips to restore their body stores after fasting on land during breeding or moulting. Their replenishment of body stores influences their energy expenditure during dives and their oxygen (O2) reserves (via muscular mass), yet how they manage their O2 stores during their dives is not fully understood. In this study, 63 female SESs from Kerguelen Island were equipped with accelerometers and time-depth recorders to investigate changes in diving parameters through their foraging trips. Two categories of dive behaviour were identified and related to the body size of individuals, with smaller SESs performing shallower and shorter dives requiring greater mean stroke amplitude compared with larger individuals. In relation to body size, the larger seals had lower estimated oxygen consumption levels for a given buoyancy (i.e. body density) compared with smaller individuals. However, both groups were estimated to have the same oxygen consumption of 0.079±0.001 ml O2 stroke-1 kg-1 for a given dive duration and at neutral buoyancy when the cost of transport was minimal. Based on these relationships, we built two models that estimate changes in oxygen consumption according to dive duration and body density. The study highlights that replenishing body stores improves SES foraging efficiency, as indicated by increased time spent at the bottom of the ocean. Thus, prey-capture attempts increase as SES buoyancy approaches the neutral buoyancy point.


Assuntos
Mergulho , Focas Verdadeiras , Animais , Feminino , Mergulho/fisiologia , Consumo de Oxigênio/fisiologia , Metabolismo Energético , Focas Verdadeiras/fisiologia , Oxigênio
5.
J Hered ; 114(2): 94-109, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971118

RESUMO

Genome sequences can reveal the extent of inbreeding in small populations. Here, we present the first genomic characterization of type D killer whales, a distinctive eco/morphotype with a circumpolar, subantarctic distribution. Effective population size is the lowest estimated from any killer whale genome and indicates a severe population bottleneck. Consequently, type D genomes show among the highest level of inbreeding reported for any mammalian species (FROH ≥ 0.65). Detected recombination cross-over events of different haplotypes are up to an order of magnitude rarer than in other killer whale genomes studied to date. Comparison of genomic data from a museum specimen of a type D killer whale that stranded in New Zealand in 1955, with 3 modern genomes from the Cape Horn area, reveals high covariance and identity-by-state of alleles, suggesting these genomic characteristics and demographic history are shared among geographically dispersed social groups within this morphotype. Limitations to the insights gained in this study stem from the nonindependence of the 3 closely related modern genomes, the recent coalescence time of most variation within the genomes, and the nonequilibrium population history which violates the assumptions of many model-based methods. Long-range linkage disequilibrium and extensive runs of homozygosity found in type D genomes provide the potential basis for both the distinctive morphology, and the coupling of genetic barriers to gene flow with other killer whale populations.


Assuntos
Orca , Animais , Orca/genética , Densidade Demográfica , Variação Genética , Genoma , Endogamia , Homozigoto
6.
Proc Biol Sci ; 289(1967): 20212452, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078353

RESUMO

Antarctic polynyas are persistent open water areas which enable early and large seasonal phytoplankton blooms. This high primary productivity, boosted by iron supply from coastal glaciers, attracts organisms from all trophic levels to form a rich and diverse community. How the ecological benefit of polynya productivity is translated to the highest trophic levels remains poorly resolved. We studied 119 southern elephant seals feeding over the Antarctic shelf and demonstrated that: (i) 96% of seals foraging here used polynyas, with individuals spending on average 62% of their time there; (ii) the seals exhibited more area-restricted search behaviour when in polynyas; and (iii) these seals gained more energy (indicated by increased buoyancy from greater fat stores) when inside polynyas. This higher-quality foraging existed even when ice was not present in the study area, indicating that these are important and predictable foraging grounds year-round. Despite these energetic advantages from using polynyas, not all the seals used them extensively. Factors other than food supply may influence an individual's choice in their use of feeding grounds, such as exposure to predation or the probability of being able to return to distant sub-Antarctic breeding sites.


Assuntos
Focas Verdadeiras , Animais , Regiões Antárticas , Camada de Gelo , Comportamento Predatório
7.
Biol Lett ; 18(2): 20210328, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104426

RESUMO

Fisheries can generate feeding opportunities for large marine predators in the form of discards or accessible catch. How the use of this anthropogenic food may spread as a new behaviour, across individuals within populations over time, is poorly understood. This study used a 16-year (2003-2018) monitoring of two killer whale Orcinus orca subantarctic populations (regular and Type-D at Crozet), and Bayesian multistate capture-mark-recapture models, to assess temporal changes in the number of individuals feeding on fish caught on hooks ('depredation' behaviour) of a fishery started in 1996. For both populations, the number of depredating individuals increased during the study period (34 to 94 for regular; 17 to 43 for Type-D). Increasing abundance is unlikely to account for this and, rather, the results suggest depredation was acquired by increasing numbers of existing individuals. For regular killer whales, a plateau reached from 2014 suggests that it took 18 years for the behaviour to spread across the whole population. A more recent plateau was apparent for Type-Ds but additional years are needed to confirm this. These findings show how changes in prey availability caused by human activities lead to rapid, yet progressive, innovations in killer whales, likely altering the ecological role of this top-predator.


Assuntos
Orca , Animais , Teorema de Bayes , Pesqueiros
8.
Proc Natl Acad Sci U S A ; 116(24): 11812-11817, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31110009

RESUMO

In highly social top predators, group living is an ecological strategy that enhances individual fitness, primarily through increased foraging success. Additive mortality events across multiple social groups in populations may affect the social structure, and therefore the fitness, of surviving individuals. This hypothesis was examined in a killer whale (Orcinus orca) population that experienced a 7-y period of severe additive mortality due to lethal interactions with illegal fishing vessels. Using both social and demographic analyses conducted on a unique long-term dataset encompassing periods before, during, and after this event, results indicated a decrease in both the number and the mean strength of associations of surviving individuals during the additive mortality period. A positive significant correlation between association strength and apparent survival suggested that the fitness of surviving individuals was impacted by the additive mortality event. After this event, individuals responded to the loss of relatives in their social groups by associating with a greater number of other social groups, likely to maintain a functional group size that maximized their foraging success. However, these associations were loose; individuals did not reassociate in highly stable social groups, and their survival remained low years after the mortality event. These findings demonstrate how the disruption of social structure in killer whales may lead to prolonged negative effects of demographic stress beyond an additive mortality event. More importantly, this study shows that sociality has a key role in the resilience of populations to human-induced mortality; this has major implications for the conservation of highly social and long-lived species.


Assuntos
Comportamento Animal/fisiologia , Orca/fisiologia , Animais , Ecossistema , Comportamento Social
9.
Mol Ecol ; 30(23): 6162-6177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416064

RESUMO

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


Assuntos
Orca , Animais , Genoma , Homozigoto , Endogamia , Masculino , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Orca/genética
10.
Proc Biol Sci ; 287(1933): 20201544, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811318

RESUMO

Changes in the foraging environment and at-sea distribution of southern elephant seals from Kerguelen Islands were investigated over a decade (2004-2018) using tracking, weaning mass, and blood δ13C values. Females showed either a sub-Antarctic or an Antarctic foraging strategy, and no significant shift in their at-sea distribution was detected between 2004 and 2017. The proportion of females foraging in sub-Antarctic versus Antarctic habitats did not change over the 2006-2018 period. Pup weaning mass varied according to the foraging habitat of their mothers. The weaning mass of sub-Antarctic foraging mothers' pups decreased by 11.7 kg over the study period, but they were on average 5.8 kg heavier than pups from Antarctic foraging mothers. Pup blood δ13C values decreased by 1.1‰ over the study period regardless of their sex and the presumed foraging habitat of their mothers. Together, these results suggest an ecological change is occurring within the Indian sector of the Southern Ocean with possible consequences on the foraging performance of southern elephant seals. We hypothesize that this shift in δ13C is related to a change in primary production and/or in the composition of phytoplankton communities, but this requires further multidisciplinary investigations.


Assuntos
Focas Verdadeiras/sangue , Desmame , Animais , Regiões Antárticas , Isótopos de Carbono/sangue , Feminino , Masculino
11.
J Exp Biol ; 223(Pt 10)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430464

RESUMO

Bioluminescence, which occurs in approximately 80% of the world's mesopelagic fauna, can take the form of a low-intensity continuous glow (e.g. for counter-illumination or signalling) or fast repetitions of brighter anti-predatory flashes. The southern elephant seal (SES) is a major consumer of mesopelagic organisms, in particular the abundant myctophid fish, yet the fine-scale relationship between this predator's foraging behaviour and bioluminescent prey remains poorly understood. We hypothesised that brief, intense light emissions should be closely connected with prey strikes when the seal is targeting bioluminescent prey that reacts by emitting anti-predator flashes. To test this, we developed a biologging device containing a fast-sampling light sensor together with location and movement sensors to measure simultaneously anti-predator bioluminescent emissions and the predator's attack motions with a 20 ms resolution. Tags were deployed on female SES breeding at Kerguelen Islands and Península Valdés, Argentina. In situ light levels in combination with duration of prey capture attempts indicated that seals were targeting a variety of prey types. For some individuals, bioluminescent flashes occurred in a large proportion of prey strikes, with the timing of flashes closely connected with the predator's attack motion, suggestive of anti-predator emissions. Marked differences across individuals and location indicate that SES do exploit bioluminescent organisms but the proportion of these in the diet varies widely with location. The combination of wideband light and acceleration data provides new insight into where and when different prey types are encountered and how effectively they might be captured.


Assuntos
Ecossistema , Focas Verdadeiras , Animais , Argentina , Feminino , Peixes , Humanos , Comportamento Predatório
12.
Mol Ecol ; 28(14): 3427-3444, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31131963

RESUMO

Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


Assuntos
Fluxo Gênico , Genoma , Orca/genética , Alelos , Animais , Regiões Antárticas , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Deriva Genética , Variação Genética , Geografia , Cadeias de Markov , Modelos Genéticos , Filogenia , Análise de Componente Principal
13.
J Exp Biol ; 220(Pt 9): 1626-1633, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202583

RESUMO

Measuring physiological data in free-ranging marine mammals remains challenging, owing to their far-ranging foraging habitat. Yet, it is important to understand how these divers recover from effort expended underwater, as marine mammals can perform deep and recurrent dives. Among them, southern elephant seals (Mirounga leonina) are one of the most extreme divers, diving continuously at great depth and for long duration while travelling over large distances within the Southern Ocean. To determine how they manage post-dive recovery, we deployed hydrophones on four post-breeding female southern elephant seals. Cardiac data were extracted from sound recordings when the animal was at the surface, breathing. Mean heart rate at the surface was 102.4±4.9 beats min-1 and seals spent on average 121±20 s breathing. During these surface intervals, the instantaneous heart rate increased with time. Elephant seals are assumed to drastically slow their heart rate (bradycardia) while they are deep underwater, and increase it (tachycardia) during the ascent towards the surface. Our finding suggests that tachycardia continues while the animal stays breathing at the surface. Also, the measured mean heart rate at the surface was unrelated to the duration and swimming effort of the dive prior to the surface interval. Recovery (at the surface) after physical effort (underwater) appears to be related to the overall number of heart beats performed at the surface, and therefore total surface duration. Southern elephant seals recover from dives by adjusting the time spent at the surface rather than their heart rate.


Assuntos
Mergulho/fisiologia , Frequência Cardíaca/fisiologia , Focas Verdadeiras/fisiologia , Acústica , Animais , Feminino , Respiração , Fatores de Tempo
14.
J Anim Ecol ; 84(4): 1081-91, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25649011

RESUMO

The degree of individual specialization in resource use differs widely among wild populations where individuals range from fully generalized to highly specialized. This interindividual variation has profound implications in many ecological and evolutionary processes. A recent review proposed four main ecological causes of individual specialization: interspecific and intraspecific competition, ecological opportunity and predation. Using the isotopic signature of subsampled whiskers, we investigated to what degree three of these factors (interspecific and intraspecific competition and ecological opportunity) affect the population niche width and the level of individual foraging specialization in two fur seal species, the Antarctic and subantarctic fur seals (Arctocephalus gazella and Arctocephalus tropicalis), over several years. Population niche width was greater when the two seal species bred in allopatry (low interspecific competition) than in sympatry or when seals bred in high-density stabilized colonies (high intraspecific competition). In agreement with the niche variation hypothesis (NVH), higher population niche width was associated with higher interindividual niche variation. However, in contrast to the NVH, all Antarctic females increased their niche width during the interbreeding period when they had potential access to a wider diversity of foraging grounds and associated prey (high ecological opportunities), suggesting they all dispersed to a similar productive area. The degree of individual specialization varied among populations and within the annual cycle. Highest levels of interindividual variation were found in a context of lower interspecific or higher intraspecific competition. Contrasted results were found concerning the effect of ecological opportunity. Depending on seal species, females exhibited either a greater or lower degree of individual specialization during the interbreeding period, reflecting species-specific biological constraints during that period. These results suggest a significant impact of ecological interactions on the population niche width and degree of individual specialization. Such variation at the individual level may be an important factor in the species plasticity with significant consequences on how it may respond to environmental variability.


Assuntos
Comportamento Alimentar , Otárias/fisiologia , Comportamento Predatório , Animais , Regiões Antárticas , Isótopos de Carbono , Comportamento Competitivo , Feminino , Oceano Índico , Isótopos de Nitrogênio , Especificidade da Espécie , Simpatria , Vibrissas/química
15.
Rapid Commun Mass Spectrom ; 29(16): 1485-90, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-26212163

RESUMO

RATIONALE: In mammals including humans, mother-to-offspring transfer of nutrients has been the focus of several isotopic studies. Measurement of δ(13) C and δ(15) N values were mainly conducted on easily sampled tissues such as blood and hair that allow the calculation of apparent discrimination factors (∆(13) C and ∆(15) N) between offspring and maternal tissues. Quantifying real ∆(13) C and ∆(15) N values requires the measurement of the δ(13) C and δ(15) N values of milk, the exclusive food of newborns. Surprisingly, little isotopic information is available on milk and its biochemical components (lipids and proteins). METHODS: Paired blood and milk samples from 10 lactating females and their pups were collected from two otariid species, the Antarctic and subantarctic fur seals. Tissue δ(13) C and δ(15) N values were measured using continuous-flow isotope ratio mass spectrometry (CFIRMS) on maternal and offspring blood, and on whole milk, lipid-free milk and milk lipids, thus allowing the calculation and comparison of apparent (maternal blood to offspring blood) and real (lipid-free milk to offspring blood) ∆(13) C and ∆(15) N values. RESULTS: In both fur seal species, the apparent ∆(13) C values averaged ~0.0 ‰. Lipid-free milk was slightly (13) C-depleted compared with both maternal and pup blood and it was strongly (13) C-enriched (~6.3 ‰) compared with milk lipids. In contrast, the apparent and real ∆(15) N values averaged 1.2-1.4 and 2.6-3.0 ‰, respectively, the differences being explained by the ~1.5 ‰ lower milk δ(15) N values than those of maternal blood. CONCLUSIONS: In fur seals, the low apparent ∆(15) N translated into a higher real ∆(15) N value, amounting to a full trophic level, which is in agreement with the almost never verified hypothesis that (15) N differences between mothers and their offsprings should reflect one complete trophic level. The study highlights the need to measure milk isotopic values to disentangle the nutritional mother-to-offspring relationships.


Assuntos
Animais Lactentes/fisiologia , Isótopos de Carbono/análise , Otárias/fisiologia , Leite/química , Isótopos de Nitrogênio/análise , Animais , Feminino , Lactação , Masculino , Estado Nutricional
16.
Proc Biol Sci ; 281(1795)2014 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-25297864

RESUMO

Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation ('pelagic' and 'coastal') of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species.


Assuntos
Distribuição Animal , Golfinho Nariz-de-Garrafa/anatomia & histologia , Golfinho Nariz-de-Garrafa/fisiologia , Variação Genética , Animais , Golfinho Nariz-de-Garrafa/genética , DNA Mitocondrial/genética , Dieta , Ecossistema , Europa (Continente) , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Mol Ecol ; 23(4): 857-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24383934

RESUMO

Despite no obvious barrier to gene flow, historical environmental processes and ecological specializations can lead to genetic differentiation in highly mobile animals. Ecotypes emerged in several large mammal species as a result of niche specializations and/or social organization. In the North-West Atlantic, two distinct bottlenose dolphin (Tursiops truncatus) ecotypes (i.e. 'coastal' and 'pelagic') have been identified. Here, we investigated the genetic population structure of North-East Atlantic (NEA) bottlenose dolphins on a large scale through the analysis of 381 biopsy-sampled or stranded animals using 25 microsatellites and a 682-bp portion of the mitochondrial control region. We shed light on the likely origin of stranded animals using a carcass drift prediction model. We showed, for the first time, that coastal and pelagic bottlenose dolphins were highly differentiated in the NEA. Finer-scale population structure was found within the two groups. We suggest that distinct founding events followed by parallel adaptation may have occurred independently from a large Atlantic pelagic population in the two sides of the basin. Divergence could be maintained by philopatry possibly as a result of foraging specializations and social organization. As coastal environments are under increasing anthropogenic pressures, small and isolated populations might be at risk and require appropriate conservation policies to preserve their habitats. While genetics can be a powerful first step to delineate ecotypes in protected and difficult to access taxa, ecotype distinction should be further documented through diet studies and the examination of cranial skull features associated with feeding.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Ecossistema , Variação Genética , Genética Populacional , Animais , Oceano Atlântico , DNA Mitocondrial/genética , Repetições de Microssatélites , Dados de Sequência Molecular , Densidade Demográfica , Análise de Sequência de DNA
18.
J Exp Biol ; 217(Pt 14): 2609-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803471

RESUMO

Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration.


Assuntos
Comportamento Animal/fisiologia , Composição Corporal , Mergulho/fisiologia , Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Oceanos e Mares , Telemetria
19.
Ecol Evol ; 14(5): e11448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799391

RESUMO

Intra-population heterogeneity in the behavioural response of predators to changes in prey availability caused by human activities can have major evolutionary implications. Among these activities, fisheries, while extracting resources, also provide new feeding opportunities for marine top predators. However, heterogeneity in the extent to which individuals have responded to these opportunities within populations is poorly understood. Here, we used 18 years of photo-identification data paired with statistical models to assess variation in the way killer whale social units within a subantarctic population (Crozet Islands) interact with fisheries to feed on fish caught on fishing gear (i.e., depredation behaviour). Our results indicate large heterogeneity in both the spatial and temporal extents of depredation across social units. While some frequently depredated on fishery catches over large areas, others sporadically did so and in small areas consistently over the years. These findings suggest that killer whale social units are exposed to varying levels of impacts of depredation, both negative (potential retaliation from fishers) and positive (food provisioning), on their life history traits, and may explain the contrasted demographic patterns observed within the declining population at Crozet but also potentially within the many other killer whale populations documented depredating on fisheries catches worldwide.

20.
Physiol Behav ; 279: 114525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38531424

RESUMO

Weaned southern elephant seals (SES) quickly transition from terrestrial to aquatic life after a 5- to 6-week post-weaning period. At sea, juveniles and adult elephant seals present extreme, continuous diving behaviour. Previous studies have highlighted the importance of the post-weaning period for weanlings to prepare for the physiological challenges of their future sea life. However, very little is known about how their body condition during this period may influence the development of their behaviour and brain activities. To characterise changes in the behavioural and brain activity of weanlings prior to ocean departure, we implemented a multi-logger approach combining measurements of movements (related to behaviour), pressure (related to diving), and brain electrical activity. As pups age, the amount of time allocated to resting decreases in favour of physical activity. Most resting (9.6 ± 1.2 h/day) takes place during daytime, with periods of slow-wave sleep representing 4.9 ± 0.9 h/day during the first 2 weeks. Furthermore, an increasing proportion of physical activity transitions from land to shore. Additionally, pups in poorer condition (lean group) are more active earlier than those in better condition (corpulent group). Finally, at weaning, clear circadian activity with two peaks at dawn and dusk is observed, and this pattern remains unchanged during the 4 weeks on land. This circadian pattern matches the one observed in adults at sea, with more prey catches at dawn and dusk, raising the question of whether it is endogenous or triggered by the mother during lactation.


Assuntos
Mães , Focas Verdadeiras , Feminino , Animais , Humanos , Focas Verdadeiras/fisiologia , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA