Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 26(4): 1815-1825, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34591773

RESUMO

Image-based patient-specific modelling of hemodynamics are gaining increased popularity as a diagnosis and outcome prediction solution for a variety of cardiovascular diseases. While their potential to improve diagnostic capabilities and thereby clinical outcome is widely recognized, these methods require considerable computational resources since they are mostly based on conventional numerical methods such as computational fluid dynamics (CFD). As an alternative to the numerical methods, we propose a machine learning (ML) based approach to calculate patient-specific hemodynamic parameters. Compared to CFD based methods, our approach holds the benefit of being able to calculate a patient-specific hemodynamic outcome instantly with little need for computational power. In this proof-of-concept study, we present a deep artificial neural network (ANN) capable of computing hemodynamics for patients with aortic coarctation in a centerline aggregated (i.e., locally averaged) form. Considering the complex relation between vessels shape and hemodynamics on the one hand and the limited availability of suitable clinical data on the other, a sufficient accuracy of the ANN may however not be achieved with available data only. Another key aspect of this study is therefore the successful augmentation of available clinical data. Using a statistical shape model, additional training data was generated which substantially increased the ANN's accuracy, showcasing the ability of ML based methods to perform in-silico modelling tasks previously requiring resource intensive CFD simulations.


Assuntos
Aprendizado Profundo , Aorta , Simulação por Computador , Hemodinâmica , Humanos , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente
2.
Sci Rep ; 9(1): 12788, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484969

RESUMO

DNA compaction and accessibility in eukaryotes are governed by nucleosomes and orchestrated through interactions between DNA and DNA-binding proteins. Using QuantAFM, a method for automated image analysis of atomic force microscopy (AFM) data, we performed a detailed statistical analysis of structural properties of mono-nucleosomes. QuantAFM allows fast analysis of AFM images, including image preprocessing, object segmentation, and quantification of different structural parameters to assess DNA accessibility of nucleosomes. A comparison of nucleosomes reconstituted with and without linker histone H1 quantified H1's already described ability of compacting the nucleosome. We further employed nucleosomes bearing two charge-modifying mutations at position R81 and R88 in histone H2A (H2A R81E/R88E) to characterize DNA accessibility under destabilizing conditions. Upon H2A mutation, even in presence of H1, the DNA opening angle at the entry/exit site was increased and the DNA wrapping length around the histone core was reduced. Interestingly, a distinct opening of the less bendable DNA side was observed upon H2A mutation, indicating an enhancement of the intrinsic asymmetry of the Widom-601 nucleosomes. This study validates AFM as a technique to investigate structural parameters of nucleosomes and highlights how the DNA sequence, together with nucleosome modifications, can influence the DNA accessibility.


Assuntos
Histonas , Microscopia de Força Atômica , Nucleossomos , Animais , Histonas/química , Histonas/genética , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA