Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
2.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
3.
J Biol Chem ; 299(7): 104915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315790

RESUMO

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Assuntos
Morte Celular , Estresse do Retículo Endoplasmático , Ubiquitinas , eIF-2 Quinase , Animais , Camundongos , Apoptose , eIF-2 Quinase/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas
4.
Hepatology ; 78(1): 45-57, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632993

RESUMO

BACKGROUND AND AIM: Drug-induced liver injury occurs frequently and can be life threatening. Although drug-induced liver injury is mainly caused by the direct drug cytotoxicity, increasing evidence suggests that the interplay between hepatocytes and immune cells can define this pathogenic process. Here, we interrogate the role of the pattern recognition scavenger receptor A (SRA) for regulating hepatic inflammation and drug-induced liver injury. APPROACH AND RESULTS: Using acetaminophen (APAP) or halothane-induced liver injury models, we showed that SRA loss renders mice highly susceptible to drug hepatotoxicity, indicated by the increased mortality and liver pathology. Mechanistic studies revealed that APAP-induced liver injury exaggerated in the absence of SRA was associated with the decreased anti-inflammatory and prosurvival cytokine IL-10 concomitant with excessive hepatic inflammation. The similar correlation between SRA and IL-10 expression was also seen in human following APAP uptake. Bone marrow reconstitution and liposomal clodronate depletion studies established that the hepatoprotective activity of SRA mostly resized in the immune sentinel KCs. Furthermore, SRA-facilitated IL-10 production by KCs in response to injured hepatocytes mitigated activation of the Jun N-terminal kinase-mediated signaling pathway in hepatocytes. In addition, supplemental use of IL-10 with N -acetylcysteine, only approved treatment of APAP overdose, conferred mice improved protection from APAP-induced liver injury. CONCLUSION: We identify a novel hepatocyte-extrinsic pathway governed by the immune receptor SRA that maintains liver homeostasis upon drug insult. Giving that drug (ie, APAP) overdose is the leading cause of acute liver failure, targeting this hepatoprotective SRA-IL-10 axis may provide new opportunities to optimize the current management of drug-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Halotano , Hepatócitos , Receptores Depuradores , Receptores Depuradores/metabolismo , Animais , Camundongos , Acetaminofen/toxicidade , Halotano/toxicidade , Fígado/efeitos dos fármacos , Inflamação , Hepatócitos/metabolismo , Homeostase
5.
Bioorg Chem ; 150: 107562, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901282

RESUMO

Accumulating data support the key roles of the NLRP3 inflammasome, an essential component of the innate immune system, in human pathophysiology. As an emerging drug target and a potential biomarker for human diseases, small molecule inhibitors of the NLRP3 inflammasome have been actively pursued. Our recent studies identified a small molecule, MS-II-124, as a potent NLRP3 inhibitor and potential imaging probe. In this report, MS-II-124 was further characterized by an unbiased and comprehensive analysis through Eurofins BioMAP Diversity PLUS panel that contains 12 human primary cell-based systems. The analysis revealed promising activities of MS-II-124 on inflammation and immune functions, further supporting the roles of the NLRP3 inflammasome in these model systems. Further studies of MS-II-124 in mouse model of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and NLRP3 knockout mice demonstrated its target engagement, efficacy to suppress inflammatory cytokines and infiltration of immune cells in the lung tissues. In summary, the results support the therapeutic potential of MS-II-124 as a NLRP3 inhibitor and warrant future studies of this compound and its analogs to develop therapeutics for ALI/ARDS.

6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Rheumatology (Oxford) ; 60(5): 2409-2420, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33246326

RESUMO

OBJECTIVES: While myeloid-derived suppressor cells (MDSCs) were previously shown to promote a proinflammatory T helper (Th) 17 response in autoimmune conditions, a potential impact of the MDSC-Th17 immune axis on abnormal bone destruction in RA remains largely unknown. METHODS: We investigated the correlation between the frequency of MDSCs or its subsets and joint destruction in RA patients. The reciprocal actions of patient-derived MDSCs and Th17 cells were studied using osteoclast (OC) differentiation and bone resorption assays in vitro, which were further validated using mouse models of RA. Contribution of MDSCs to osteoclastogenesis and bone erosion in vivo was determined by depletion or transfer of MDSCs. RESULTS: Human MDSCs, particularly monocytic MDSCs (M-MDSCs), exhibit inherent OC-differentiating capacity and positively correlate with clinical bone erosion in RA patients. Strikingly, patient-derived M-MDSCs can program Th17 cells towards a pro-osteoclastogenic phenotype, which in return potentiates OC differentiation via the receptor activator of nuclear factor κΒ ligand (RANK-L)-RANK signalling. This enhanced osteolysis driven by the reciprocal actions of M-MDSCs and Th17 cells is further confirmed using mouse models of RA. Selective depletion of M-MDSCs significantly ameliorates osteoclastogenesis and disease severity in arthritic mice, whereas transfer of M-MDSCs aggravates bone erosion associated with increased OCs in recipient mice. CONCLUSION: Our findings highlight the functional plasticity of MDSCs and identify a novel pro-osteoclastogenic pathway governed by interplay between myeloid cells and T lymphocytes in autoimmune RA.


Assuntos
Artrite Reumatoide/imunologia , Reabsorção Óssea/imunologia , Monócitos/imunologia , Células Supressoras Mieloides/imunologia , Osteoclastos/imunologia , Células Th17/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Reabsorção Óssea/patologia , Diferenciação Celular/imunologia , Humanos , Camundongos , Fenótipo
8.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008495

RESUMO

Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.


Assuntos
Interleucinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Morte Celular/fisiologia , Humanos , Melanoma/metabolismo
9.
Pharmacol Res ; 155: 104695, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061839

RESUMO

The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.


Assuntos
Metástase Neoplásica/genética , Neoplasias/terapia , Sinteninas/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia
10.
Nano Lett ; 18(10): 6164-6174, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207473

RESUMO

Cell membrane-camouflaged nanoparticles have appeared as a promising platform to develop active tumor targeting nanomedicines. To evade the immune surveillance, we designed a composite cell membrane-camouflaged biomimetic nanoplatform, namely, leutusome, which is made of liposomal nanoparticles incorporating plasma membrane components derived from both leukocytes (murine J774A.1 cells) and tumor cells (head and neck tumor cells HN12). Exogenous phospholipids were used as building blocks to fuse with two cell membranes to form liposomal nanoparticles. Liposomal nanoparticles made of exogenous phospholipids only or in combination with one type of cell membrane were fabricated and compared. The anticancer drug paclitaxel (PTX) was used to make drug-encapsulating liposomal nanoparticles. Leutusome resembling characteristic plasma membrane components of the two cell membranes were examined and confirmed in vitro. A xenograft mouse model of head and neck cancer was used to profile the blood clearance kinetics, biodistribution, and antitumor efficacy of the different liposomal nanoparticles. The results demonstrated that leutusome obtained prolonged blood circulation and was most efficient accumulating at the tumor site (79.1 ± 6.6% ID per gram of tumor). Similarly, leutusome composed of membrane fractions of B16 melanoma cells and leukocytes (J774A.1) showed prominent accumulation within the B16 tumor, suggesting the generalization of the approach. Furthermore, PTX-encapsulating leutusome was found to most potently inhibit tumor growth while not causing systemic adverse effects.


Assuntos
Biomimética/métodos , Membrana Celular/metabolismo , Lipossomos/metabolismo , Melanoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Membrana Celular/química , Sistemas de Liberação de Medicamentos , Humanos , Leucócitos , Lipossomos/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Ann Rheum Dis ; 75(1): 278-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371442

RESUMO

OBJECTIVES: Although myeloid-derived suppressor cells (MDSCs) have been linked to T cell tolerance, their role in autoimmune rheumatoid arthritis (RA) remains elusive. Here we investigate the potential association of MDSCs with the disease pathogenesis using a preclinical model of RA and specimen collected from patients with RA. METHODS: The frequency of MDSCs in blood, lymphoid tissues, inflamed paws or synovial fluid and their association with disease severity, tissue inflammation and the levels of pathogenic T helper (Th) 17 cells were examined in arthritic mice or in patients with RA (n=35) and osteoarthritis (n=15). The MDSCs in arthritic mice were also characterised for their phenotype, inflammation status, T cell suppressive activity and their capacity of pro-Th17 cell differentiation. The involvement of MDSCs in the disease pathology and a Th17 response was examined by adoptive transfer or antibody depletion of MDSCs in arthritic mice or by coculturing mouse or human MDSCs with naïve CD4+ T cells under Th17-polarising conditions. RESULTS: MDSCs significantly expanded in arthritic mice and in patients with RA, which correlated positively with disease severity and an inflammatory Th17 response. While displaying T cell suppressive activity, MDSCs from arthritic mice produced high levels of inflammatory cytokines (eg, interleukin (IL)-1ß, TNF-α). Mouse and human MDSCs promoted Th17 cell polarisation ex vivo. Transfer of MDSCs facilitated disease progression, whereas their elimination in arthritic mice ameliorated disease symptoms concomitant with reduction of IL-17A/Th17 cells. CONCLUSIONS: Our studies suggest that proinflammatory MDSCs with their capacity to drive Th17 cell differentiation may be a critical pathogenic factor in autoimmune arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Células Mieloides/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Técnicas de Cocultura , Progressão da Doença , Humanos , Tolerância Imunológica/imunologia , Masculino , Camundongos Endogâmicos C57BL , Osteoartrite/imunologia , Índice de Gravidade de Doença , Líquido Sinovial/imunologia , Células Th17/imunologia
12.
Bioorg Med Chem Lett ; 25(16): 3179-83, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26094120

RESUMO

Scavenger receptor A (SRA) has been implicated in the processes of tumor invasion and acts as an immunosuppressor during therapeutic cancer vaccination. Pharmacological inhibition of SRA function thus holds a great potential to improve treatment outcome of cancer therapy. Macromolecular natural product sennoside B was recently shown to block SRA function. Here we report the identification and characterization of a small molecule SRA inhibitor rhein. Rhein, a deconstructed analog of sennoside B, reversed the suppressive activity of SRA in dendritic cell-primed T cell activation, indicated by transcription activation of il2 gene and production of IL-2. Rhein also inhibited SRA ligand polyinosinic:polycytidylic acid (poly(I:C)) induced activation of transcriptional factors, including interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1). Additionally, this newly identified lead compound was docked into the homology models of the SRA cysteine rich domain to gain insights into its interaction with the receptor. It was then found that rhein can favorably interact with SRA cysteine rich domain. Collectively, rhein, being the first identified small molecule inhibitors for SRA, warrants further structure-activity relationship studies, which may lead to development of novel pharmacological intervention for cancer therapy.


Assuntos
Antraquinonas/síntese química , Antraquinonas/farmacologia , Receptores Depuradores Classe A/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Desenho de Fármacos , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Poli I-C/antagonistas & inibidores , Extrato de Senna/química , Extrato de Senna/farmacologia , Senosídeos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Receptores Toll-Like/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , beta-Galactosidase/antagonistas & inibidores
13.
J Immunol ; 191(12): 6010-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24218449

RESUMO

Efficient cross-presentation of protein Ags to CTLs by dendritic cells (DCs) is essential for the success of prophylactic and therapeutic vaccines. In this study, we report a previously underappreciated pathway involving Ag entry into the endoplasmic reticulum (ER) critically needed for T cell cross-priming induced by a DC-targeted vaccine. Directing the clinically relevant, melanoma Ag gp100 to mouse-derived DCs by molecular adjuvant and chaperone Grp170 substantially facilitates Ag access to the ER. Grp170 also strengthens the interaction of internalized protein Ag with molecular components involved in ER-associated protein dislocation and/or degradation, which culminates in cytosolic translocation for proteasome-dependent degradation and processing. Targeted disruption of protein retrotranslocation causes exclusive ER retention of tumor Ag in mouse bone marrow-derived DCs and splenic CD8(+) DCs. This results in the blockade of Ag ubiquitination and processing, which abrogates the priming of Ag-specific CD8(+) T cells in vitro and in vivo. Therefore, the improved ER entry of tumor Ag serves as a molecular basis for the superior cross-presenting capacity of Grp170-based vaccine platform. The ER access and retrotranslocation represents a distinct pathway that operates within DCs for cross-presentation and is required for the activation of Ag-specific CTLs by certain vaccines. These results also reinforce the importance of the ER-associated protein quality control machinery and the mode of the Ag delivery in regulating DC-elicited immune outcomes.


Assuntos
Adjuvantes Imunológicos , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Retículo Endoplasmático/imunologia , Glicoproteínas/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinação/métodos , Antígeno gp100 de Melanoma/imunologia , ADP Ribose Transferases/farmacologia , Transferência Adotiva , Animais , Toxinas Bacterianas/farmacologia , Células da Medula Óssea/imunologia , Vacinas Anticâncer/farmacocinética , Linhagem da Célula , Células Cultivadas , Citosol/metabolismo , Células Dendríticas/classificação , Endocitose/imunologia , Endossomos/metabolismo , Exotoxinas/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Canais de Translocação SEC , Baço/citologia , Baço/imunologia , Ubiquitinação , Fatores de Virulência/farmacologia , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/farmacocinética , Exotoxina A de Pseudomonas aeruginosa
14.
Hepatology ; 57(1): 228-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22821642

RESUMO

UNLABELLED: Negative feedback immune mechanisms are essential for maintenance of hepatic homeostasis and prevention of immune-mediated liver injury. We show here that scavenger receptor A (SRA/CD204), a pattern recognition molecule, is highly up-regulated in the livers of patients with autoimmune or viral hepatitis, and of mice during concanavalin A (Con A)-induced hepatitis (CIH). Strikingly, genetic SRA ablation strongly sensitizes mice to Con A-induced liver injury. SRA loss, increased mortality and liver pathology correlate with excessive production of IFN-γ and heightened activation of T cells. Increased liver expression of SRA primarily occurs in mobilized hepatic myeloid cells during CIH, including CD11b(+) Gr-1(+) cells. Mechanistic studies establish that SRA on these cells functions as a negative regulator limiting T-cell activity and cytokine production. SRA-mediated protection from CIH is further validated by adoptive transfer of SRA(+) hepatic mononuclear cells or administration of a lentivirus-expressing SRA, which effectively ameliorates Con A-induced hepatic injury. Also, CIH and clinical hepatitis are associated with increased levels of soluble SRA. This soluble SRA displays a direct T-cell inhibitory effect and is capable of mitigating Con A-induced liver pathology. CONCLUSION: Our findings demonstrate an unexpected role of SRA in attenuation of Con A-induced, T-cell-mediated hepatic injury. We propose that SRA serves as an important negative feedback mechanism in liver immune homeostasis, and may be exploited for therapeutic treatment of inflammatory liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Concanavalina A/toxicidade , Hepatite Animal/imunologia , Receptores Depuradores Classe A/metabolismo , Linfócitos T/fisiologia , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatite Animal/metabolismo , Interferon gama/metabolismo , Fígado/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Immunol ; 189(9): 4295-304, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23034169

RESUMO

Myeloid-derived suppressor cells (MDSCs) have been a focus of recent study on tumor-mediated immune suppression. However, its role in Th17 cell differentiation and the pathogenesis of autoimmune diseases (e.g., multiple sclerosis) has not been determined. We show in this study that development of experimental autoimmune encephalomyelitis (EAE) in mice is associated with a profound expansion of CD11b(+)Gr-1(+) MDSCs, which display efficient T cell inhibitory functions in vitro. Unexpectedly, these MDSCs enhance the differentiation of naive CD4(+) T cell precursors into Th17 cells in a highly efficient manner under Th17-polarizing conditions, as indicated by significantly increased number of Th17 cells, elevation of IL-17A production, and upregulation of the orphan nuclear receptor RORA and RORC. Mechanistic studies show that IL-1ß represents a major mediator of MDSC-facilitated Th17 differentiation, which depends on the IL-1 receptor on CD4(+) T cells but not MDSCs. Selective depletion of MDSCs using gemcitabine results in a marked reduction in the severity of EAE (e.g., decreased clinical scores and myelin injury), which correlates with reduced Th17 cells and inflammatory cytokines (IL-17A and IL-1ß) in the lymphoid tissues and spinal cord. Adoptive transfer of MDSCs after gemcitabine treatment restores EAE disease progression. Together, we demonstrate for the first time, to our knowledge, that excessive and prolonged presence of MDSCs can drive a Th17 response and consequently contributes to the pathogenesis of EAE. These new findings provide unique insights into the pleiotropic functions of MDSCs and may help explain the failure of immunosuppressive MDSCs to control Th17/IL-17-dependent autoimmune disorders.


Assuntos
Antígeno CD11b/biossíntese , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Quimiocinas/biossíntese , Células Th17/imunologia , Animais , Antígeno CD11b/fisiologia , Encefalomielite Autoimune Experimental/etiologia , Terapia de Imunossupressão , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/patologia , Receptores de Quimiocinas/fisiologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Células Th17/metabolismo , Células Th17/patologia
16.
Dev Cell ; 59(8): 1028-1042.e5, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38452758

RESUMO

The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.


Assuntos
Interferon gama , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais , Animais , Humanos , Camundongos , Células HEK293 , Interferon gama/metabolismo , Interferon gama/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
17.
J Pharmacol Exp Ther ; 347(1): 117-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912334

RESUMO

The effects of modulating tetrahydrobiopterin (BH4) levels with a metabolic precursor, sepiapterin (SP), on dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal cancer were studied. SP in the drinking water blocks DSS-induced colitis measured as decreased disease activity index (DAI), morphologic criteria, and recovery of Ca(2+)-induced contractility responses lost as a consequence of DSS treatment. SP reduces inflammatory responses measured as the decreased number of infiltrating inflammatory macrophages and neutrophils and decreased expression of proinflammatory cytokines interleukin 1ß (IL-1ß), IL-6, and IL-17A. High-performance liquid chromatography analyses of colonic BH4 and its oxidized derivative 7,8-dihydrobiopterin (BH2) are inconclusive although there was a trend for lower BH4:BH2 with DSS treatment that was reversed with SP. Reduction of colonic cGMP levels by DSS was reversed with SP by a mechanism sensitive to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sensitive soluble guanylate cyclase (sGC). ODQ abrogates the protective effects of SP on colitis. This plus the finding that SP reduces DSS-enhanced protein Tyr nitration are consistent with DSS-induced uncoupling of NOS. The results agree with previous studies that demonstrated inactivation of sGC in DSS-treated animals as being important in recruitment of inflammatory cells and in altered cholinergic signaling and colon motility. SP also reduces the number of colon tumors in AOM/DSS-treated mice from 7 to 1 per unit colon length. Thus, pharmacologic modulation of BH4 with currently available drugs may provide a mechanism for alleviating some forms of colitis and potentially minimizing the potential for colorectal cancer in patients with colitis.


Assuntos
Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/prevenção & controle , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/prevenção & controle , Pterinas/uso terapêutico , Animais , Colite/patologia , Neoplasias do Colo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
18.
FASEB J ; 26(4): 1493-505, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22207611

RESUMO

Recognition of pathogen-associated molecular patterns by innate immune receptors is essential for host defense responses. Although extracellular stress proteins are considered as indicators of the stressful conditions (e.g., infection or cell injury), the exact roles of these molecules in the extracellular milieu remain less defined. We found that glucose-regulated protein 170 (Grp170), the largest stress protein and molecular chaperone, is highly efficient in binding CpG oligodeoxynucleotides (CpG-ODN), the microbial DNA mimetic sensed by toll-like receptor 9 (TLR9). Extracellular Grp170 markedly potentiates the endocytosis and internalization of CpG-ODN by mouse bone marrow-derived macrophages and directly interacts with endosomal TLR9 on cell entry. These molecular collaborations result in the synergistic activation of the MyD88-dependent signaling and enhanced production of proinflammatory cytokines and nitric oxide in mouse primary macrophages as well as human THP-1 monocyte-derived macrophages, suggesting that Grp170 released from injured cells facilitates the sensing of pathogen-associated "danger" signals by intracellular receptors. This CpG-ODN chaperone complex-promoted innate immunity confers increased resistance in mice to infection of Listeria monocytogenes compared with CpG-ODN treatment alone. Our studies reveal a previously unrecognized attribute of Grp170 as a superior DNA-binding chaperone capable of amplifying TLR9 activation on pathogen recognition, which provides a conceptual advance in understanding the dynamics of ancient chaperoning functions inside and outside the cell.


Assuntos
Glicoproteínas/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Chaperonas Moleculares/imunologia , Animais , Endocitose/imunologia , Endossomos/metabolismo , Glicoproteínas/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Listeria monocytogenes/imunologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos , Chaperonas Moleculares/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Receptor Toll-Like 9/imunologia
19.
J Immunol ; 187(6): 2905-14, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21832164

RESUMO

We previously reported that scavenger receptor A (SRA/CD204), a binding structure on dendritic cells (DCs) for large stress/heat shock proteins (HSPs; e.g., hsp110 and grp170), attenuated an antitumor response elicited by large HSP-based vaccines. In this study, we show that SRA/CD204 interacts directly with exogenous hsp110, and lack of SRA/CD204 results in a reduction in the hsp110 binding and internalization by DCs. However, SRA(-/-) DCs pulsed with hsp110 or grp170-reconstituted gp100 chaperone complexes exhibit a profoundly increased capability of stimulating melanoma Ag gp100-specific naive T cells compared with wild-type (WT) DCs. Similar results were obtained when SRA/CD204 was silenced in DCs using short hairpin RNA-encoding lentiviruses. In addition, hsp110-stimulated SRA(-/-) DCs produced more inflammatory cytokines associated with increased NF-κB activation, implicating an immunosuppressive role for SRA/CD204. Immunization with the hsp110-gp100 vaccine resulted in a more robust gp100-specific CD8(+) T cell response in SRA(-/-) mice than in WT mice. Lastly, SRA/CD204 absence markedly improved the therapeutic efficacy of the hsp110-gp100 vaccine in mice established with B16 melanoma, which was accompanied by enhanced activation and tumor infiltration of CD8(+) T cells. Given the presence of multiple HSP-binding scavenger receptors on APCs, we propose that selective scavenger receptor interactions with HSPs may lead to highly distinct immunological consequences. Our findings provide new insights into the immune regulatory functions of SRA/CD204 and have important implications in the rational design of protein Ag-targeted recombinant chaperone vaccines for the treatment of cancer.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Proteínas de Choque Térmico HSP110/imunologia , Melanoma Experimental/imunologia , Receptores Depuradores Classe A/imunologia , Antígeno gp100 de Melanoma/imunologia , Transferência Adotiva , Animais , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/metabolismo , Separação Celular , Células Dendríticas/metabolismo , Citometria de Fluxo , Inativação Gênica , Proteínas de Choque Térmico HSP110/metabolismo , Imunoprecipitação , Ativação Linfocitária/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Depuradores Classe A/metabolismo , Antígeno gp100 de Melanoma/metabolismo
20.
Cells ; 12(6)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980227

RESUMO

Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.


Assuntos
Histonas , Mitose , Humanos , Masculino , Histonas/metabolismo , Reparo do DNA , Proteases Específicas de Ubiquitina/metabolismo , Enzimas Desubiquitinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA