Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982974

RESUMO

Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues' growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.


Assuntos
Perfilação da Expressão Gênica , Ginkgo biloba , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Hormônios , Reguladores de Crescimento de Plantas/farmacologia , Filogenia , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743196

RESUMO

Auxin participates in various physiological and molecular response-related developmental processes and is a pivotal hormone that regulates phenotypic formation in plants. Auxin response factors (ARFs) are vital transcription factors that mediate downstream auxin signaling by explicitly binding to auxin-responsive genes' promoters. Here, to investigate the possible developmental regulatory functions of ARFs in Ginkgo biloba, through employing comprehensive bioinformatics, we recognized 15 putative GbARF members. Conserved domains and motifs, gene and protein structure, gene duplication, GO enrichment, transcriptome expression profiles, and qRT-PCR all showed that Group I and III members were highly conserved. Among them, GbARF10b and GbARF10a were revealed as transcriptional activators in the auxin response for the development of Ginkgo male flowers through sequences alignment, cis-elements analysis and GO annotation; the results were corroborated for the treatment of exogenous SA. Moreover, the GbARFs expansion occurred predominantly by segmental duplication, and most GbARFs have undergone purifying selection. The Ka/Ks ratio test identified the functional consistence of GbARF2a and GbARF2c, GbARF10b, and GbARF10a in tissue expression profiles and male flower development. In summary, our study established a new research basis for exploring Ginkgo GbARF members' roles in floral organ development and hormone response.


Assuntos
Ginkgo biloba , Ácidos Indolacéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ginkgo biloba/genética , Hormônios , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA