Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38430463

RESUMO

MOTIVATION: Large-scale gene expression studies allow gene network construction to uncover associations among genes. To study direct associations among genes, partial correlation-based networks are preferred over marginal correlations. However, FDR control for partial correlation-based network construction is not well-studied. In addition, currently available partial correlation-based methods cannot take existing biological knowledge to help network construction while controlling FDR. RESULTS: In this paper, we propose a method called Partial Correlation Graph with Information Incorporation (PCGII). PCGII estimates partial correlations between each pair of genes by regularized node-wise regression that can incorporate prior knowledge while controlling the effects of all other genes. It handles high-dimensional data where the number of genes can be much larger than the sample size and controls FDR at the same time. We compare PCGII with several existing approaches through extensive simulation studies and demonstrate that PCGII has better FDR control and higher power. We apply PCGII to a plant gene expression dataset where it recovers confirmed regulatory relationships and a hub node, as well as several direct associations that shed light on potential functional relationships in the system. We also introduce a method to supplement observed data with a pseudogene to apply PCGII when no prior information is available, which also allows checking FDR control and power for real data analysis. AVAILABILITY AND IMPLEMENTATION: R package is freely available for download at https://cran.r-project.org/package=PCGII.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Simulação por Computador , Genes de Plantas , Tamanho da Amostra
2.
Plant Cell ; 34(11): 4516-4530, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35944221

RESUMO

BRI1-EMS-SUPPRESSOR1 (BES1), a core transcription factor in the brassinosteroid (BR) signaling pathway, primarily regulates plant growth and development by influencing BR-regulated gene expression. Several E3 ubiquitin (Ub) ligases regulate BES1 stability, but little is known about BES1 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain BES1 homeostasis. Here, we report that two Arabidopsis thaliana deubiquitinating enzymes, Ub-SPECIFIC PROTEASE (UBP) 12 and UBP13, interact with BES1. UBP12 and UBP13 removed Ub from polyubiquitinated BES1 to stabilize both phosphorylated and dephosphorylated forms of BES1. A double mutant, ubp12-2w ubp13-3, lacking UBP12 and UBP13 function showed both BR-deficient and BR-insensitive phenotypes, whereas transgenic plants overexpressing UBP12 or UBP13 exhibited an increased BR response. Expression of UBP12 and UPB13 was induced during recovery after carbon starvation, which led to BES1 accumulation and quick recovery of stressed plants. Our work thus establishes a mechanism by which UBP12 and UBP13 regulate BES1 protein abundance to enhance BR-regulated growth during recovery after carbon starvation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Brassinosteroides/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética
3.
Plant Cell ; 34(7): 2594-2614, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35435236

RESUMO

The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucosinolatos/metabolismo , Fosfotransferases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 33(11): 3532-3554, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436598

RESUMO

Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Autofagia , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
New Phytol ; 236(3): 893-910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35892179

RESUMO

Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Sirolimo , Fatores de Transcrição/metabolismo
6.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640811

RESUMO

Extracting features from sensing data on edge devices is a challenging application for which deep neural networks (DNN) have shown promising results. Unfortunately, the general micro-controller-class processors which are widely used in sensing system fail to achieve real-time inference. Accelerating the compute-intensive DNN inference is, therefore, of utmost importance. As the physical limitation of sensing devices, the design of processor needs to meet the balanced performance metrics, including low power consumption, low latency, and flexible configuration. In this paper, we proposed a lightweight pipeline integrated deep learning architecture, which is compatible with open-source RISC-V instructions. The dataflow of DNN is organized by the very long instruction word (VLIW) pipeline. It combines with the proposed special intelligent enhanced instructions and the single instruction multiple data (SIMD) parallel processing unit. Experimental results show that total power consumption is about 411 mw and the power efficiency is about 320.7 GOPS/W.


Assuntos
Redes Neurais de Computação
7.
Plant J ; 97(2): 341-351, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300943

RESUMO

The FERONIA (FER) signaling pathway is known to have diverse roles in Arabidopsis thaliana, such as growth, reproduction, and defense, but how this receptor kinase is involved in various biological processes is not well established. In this work, we applied multiple mass spectrometry techniques to identify metabolites involved in the FER signaling pathway and to understand their biological roles. A direct infusion Fourier transform ion cyclotron resonance (FT-ICR)-MS approach was used for initial screening of wild-type and feronia (fer) mutant plant extracts, and Arabidopsides were found to be significantly enriched in the mutant. As Arabidopsides are known to be induced by wounding, further experiments on wounded and non-wounded leaf samples were carried out to investigate these oxylipins as well as related phytohormones using a quadrupole-time-of-flight (Q-TOF) MS by direct injection and LC-MS/MS. In a root growth bioassay with Arabidopside A isolated from fer mutants, the wild-type showed significant root growth inhibition compared with the fer mutant. Our results therefore implicated Arabidopsides, and Arabidopside A specifically, in FER functions and/or signaling. Finally, matrix-assisted laser desorption/ionization MS imaging (MALDI-MSI) was used to visualize the localization of Arabidopsides, and we confirmed that Arabidopsides are highly abundant at wounding sites in both wild-type and fer mutant leaves. More significantly, five micron high-spatial resolution MALDI-MSI revealed that Arabidopsides are localized to the chloroplasts where many stress signaling molecules are made.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Galactolipídeos/metabolismo , Oxilipinas/metabolismo , Feofitinas/metabolismo , Fosfotransferases/genética , Transdução de Sinais/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Cloroplastos/metabolismo , Cromatografia Líquida , Mutação , Fosfotransferases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
8.
Plant Cell Environ ; 39(1): 12-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25158995

RESUMO

Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP(+) ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX-derived plastidial NADPH/NADP(+) ratio change. Further, our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.


Assuntos
Arabidopsis/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Respiração Celular , Clorofila/metabolismo , Cloroplastos/metabolismo , Genes Reporter , Luz , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , NADP/metabolismo , Oxirredutases/metabolismo , Fotossíntese , Fitol/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Tetrapirróis/metabolismo
9.
Plant J ; 77(1): 59-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24164091

RESUMO

Plant steroid hormones, brassinosteroids (BRs), play essential roles in modulating cell elongation, vascular differentiation, senescence and stress responses. BRs signal through plasma membrane-localized receptor and other components to modulate the BES1/BZR1 (BRI1-EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1) family of transcription factors that modulate thousands of target genes. Arabodopsis thaliana homeodomain-leucine zipper protein 1 (HAT1), which encodes a homeodomain-leucine zipper (HD-Zip) class II transcription factor, was identified through chromatin immunoprecipitation (ChIP) experiments as a direct target gene of BES1. Loss-of-function and gain-of-function mutants of HAT1 display altered BR responses. HAT1 and its close homolog HAT3 act redundantly, as the double mutant hat1 hat3 displayed a reduced BR response that is stronger than the single mutants alone. Moreover, hat1 hat3 enhanced the phenotype of a weak allele of the BR receptor mutant bri1 and suppressed the phenotype of constitutive BR response mutant bes1-D. These results suggest that HAT1 and HAT3 function to activate BR-mediated growth. Expression levels of several BR-repressed genes are increased in hat1 hat3 and reduced in HAT1OX, suggesting that HAT1 functions to repress the expression of a subset of BR target genes. HAT1 and BES1 bind to a conserved homeodomain binding (HB) site and BR response element (BRRE) respectively, in the promoters of some BR-repressed genes. BES1 and HAT1 interact with each other and cooperate to inhibit BR-repressed gene expression. Furthermore, HAT1 can be phosphorylated and stabilized by GSK3 (GLYCOGEN SYNTHASE KINASE 3)-like kinase BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a well established negative regulator of the BR pathway. Our results thus revealed a previously unknown mechanism by which BR signaling modulates BR-repressed gene expression and coordinates plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Ligação a DNA , Expressão Gênica , Genes Reporter , Histona Acetiltransferases , Hipocótilo/citologia , Hipocótilo/enzimologia , Hipocótilo/genética , Hipocótilo/fisiologia , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Plântula/citologia , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(49): 20142-7, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169658

RESUMO

Plant steroid hormones, brassinosteroids (BRs), play important roles in plants. BRs regulate the expression of several thousand genes, half of which are induced and the other half repressed by the hormone. BRs signal through plasma membrane-localized receptor kinase brassinosteroid-insensitive 1 (BRI1), BRI1-associated receptor kinase (BAK1), and several intermediates to regulate the protein levels, cellular localizations, and/or DNA binding of BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) family transcription factors. Although BES1 is known to interact with other transcription factors, histone-modifying enzymes, and transcription elongation factors to activate BR-induced genes, how BES1 mediates the BR-repressed gene expression is not known. Here, we show that BES1 interacts with myeloblastosis family transcription factor-like 2 (MYBL2), a transcription repressor, to down-regulate BR-repressed gene expression. The loss-of-function mybl2 mutant enhances the phenotype of a weak allele of bri1 and suppresses the constitutive BR-response phenotype of bes1-D. The results suggest that suppression of BR-repressed gene expression is required for optimal BR response. Moreover, MYBL2 is a substrate of glycogen synthase kinase 3 (GSK3)-like kinase brassinosteroid-insensitive 2 (BIN2), which has been well established as a negative regulator in the BR pathway by phosphorylating and inhibiting the functions of BES1/BZR1. Unlike BIN2 phosphorylation of BES1/BZR1 leading to protein degradation, BIN2 phosphorylation stabilizes MYBL2. Such dual role of phosphorylation has also been reported in WNT signaling pathway in which GSK3 phosphorylation destabilizes ß-catenin and stabilizes Axin, a scaffolding protein facilitating the phosphorylation of ß-catenin by GSK3. Our results thus establish the mechanisms for BR-repressed gene expression and the integration of BR signaling and BR transcriptional network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Proteínas de Fluorescência Verde , Fosforilação , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 107(8): 3918-23, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20139304

RESUMO

Plant steroid hormones, brassinosteroids (BRs), regulate essential growth and developmental processes. BRs signal through membrane-localized receptor BRI1 and several other signaling components to regulate the BES1 and BZR1 family transcription factors, which in turn control the expression of hundreds of target genes. However, knowledge about the transcriptional mechanisms by which BES1/BZR1 regulate gene expression is limited. By a forward genetic approach, we have discovered that Arabidopsis thaliana Interact-With-Spt6 (AtIWS1), an evolutionarily conserved protein implicated in RNA polymerase II (RNAPII) postrecruitment and transcriptional elongation processes, is required for BR-induced gene expression. Loss-of-function mutations in AtIWS1 lead to overall dwarfism in Arabidopsis, reduced BR response, genome-wide decrease in BR-induced gene expression, and hypersensitivity to a transcription elongation inhibitor. Moreover, AtIWS1 interacts with BES1 both in vitro and in vivo. Chromatin immunoprecipitation experiments demonstrated that the presence of AtIWS1 is enriched in transcribed as well as promoter regions of the target genes under BR-induced conditions. Our results suggest that AtIWS1 is recruited to target genes by BES1 to promote gene expression during transcription elongation process. Recent genomic studies have indicated that a large number of genes could be regulated at steps after RNAPII recruitment; however, the mechanisms for such regulation have not been well established. The study therefore not only establishes an important role for AtIWS1 in plant steroid-induced gene expression but also suggests an exciting possibility that IWS1 protein can function as a target for pathway-specific activators, thereby providing a unique mechanism for the control of gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Esteroides/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcrição Gênica
12.
Autophagy ; 19(4): 1293-1310, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36151786

RESUMO

Macroautophagy/autophagy is a conserved recycling process that maintains cellular homeostasis during environmental stress. Autophagy is negatively regulated by TOR (target of rapamycin), a nutrient-regulated protein kinase that in plants is activated by several phytohormones, leading to increased growth. However, the detailed molecular mechanisms by which TOR integrates autophagy and hormone signaling are poorly understood. Here, we show that TOR modulates brassinosteroid (BR)-regulated plant growth and stress-response pathways. Active TOR was required for full BR-mediated growth in Arabidopsis thaliana. Autophagy was constitutively up-regulated upon blocking BR biosynthesis or signaling, and down-regulated by increasing the activity of the BR pathway. BIN2 (brassinosteroid-insensitive 2) kinase, a GSK3-like kinase functioning as a negative regulator in BR signaling, directly phosphorylated RAPTOR1B (regulatory-associated protein of TOR 1B), a substrate-recruiting subunit in the TOR complex, at a conserved serine residue within a typical BIN2 phosphorylation motif. Mutation of RAPTOR1B serine 916 to alanine, to block phosphorylation by BIN2, repressed autophagy and increased phosphorylation of the TOR substrate ATG13a (autophagy-related protein 13a). By contrast, this mutation had only a limited effect on growth. We present a model in which RAPTOR1B is phosphorylated and inhibited by BIN2 when BRs are absent, activating the autophagy pathway. When BRs signal and inhibit BIN2, RAPTOR1B is thus less inhibited by BIN2 phosphorylation. This leads to increased TOR activity and ATG13a phosphorylation, and decreased autophagy activity. Our studies define a new mechanism by which coordination between BR and TOR signaling pathways helps to maintain the balance between plant growth and stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fosforilação , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Arabidopsis/metabolismo , Autofagia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo
13.
Plant J ; 65(4): 634-46, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21214652

RESUMO

Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.


Assuntos
Arabidopsis/genética , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas/metabolismo , Esteroides/metabolismo , Algoritmos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(18): 7648-53, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19383785

RESUMO

Cell elongation in plants is controlled by environmental cues such as light and internal growth regulators including plant steroid hormones, brassinosteroids (BRs). In this study, we found that 3 related receptor-like kinases (RLKs), HERCULES1, THESEUS1, and FERONIA, are transcriptionally induced by BRs and are down-regulated in the loss-of-function BR mutant bri1 and up-regulated in the constitutive BR-response mutant bes1-D. These RLKs belong to the CrRLK family that has 17 members in Arabidopsis. We hypothesize that these RLKs are involved in BR-regulated processes. Although 2 of the RLKs were recently found to mediate male-female interaction during pollen tube reception (FERONIA) and to sense cell wall integrity (THESEUS1), our genetic studies demonstrated that they are required for cell elongation during vegetative growth as herk1 the1 double and fer RNAi mutants displayed striking dwarf phenotypes. The herk1 the1 double mutant enhances the dwarf phenotype of bri1 and partially suppresses bes1-D phenotype, supporting a role of HERK1/THE1 in BR-mediated cell elongation. Microarray experiments demonstrated that these RLKs control the expression of a unique set of genes including those implicated in cell elongation and 16% of the genes affected in herk1 the1 are regulated by BRs. Our results, therefore, identify a previously unknown pathway that functions cooperatively with, but largely independent of the BR pathway to regulate cell elongation. The work establishes a platform to identify other signaling components in this important pathway for plant growth and provides a paradigm to study the coordination of independent pathways in the regulation of a common biological process.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Fosfotransferases/fisiologia , Proteínas Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Fosfotransferases/genética , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Transcrição Gênica
15.
Front Plant Sci ; 13: 961096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082288

RESUMO

FERONIA (FER) receptor kinase plays versatile roles in plant growth and development, biotic and abiotic stress responses, and reproduction. Autophagy is a conserved cellular recycling process that is critical for balancing plant growth and stress responses. Target of Rapamycin (TOR) has been shown to be a master regulator of autophagy. Our previous multi-omics analysis with loss-of-function fer-4 mutant implicated that FER functions in the autophagy pathway. We further demonstrated here that the fer-4 mutant displayed constitutive autophagy, and FER is required for TOR kinase activity measured by S6K1 phosphorylation and by root growth inhibition assay to TOR kinase inhibitor AZD8055. Taken together, our study provides a previously unknown mechanism by which FER functions through TOR to negatively regulate autophagy.

16.
Dev Cell ; 56(3): 310-324.e7, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33357403

RESUMO

Arabidopsis GLYCOGEN SYNTHASE KINASE 3 (GSK3)-like kinases play various roles in plant development, including chloroplast development, but the underlying molecular mechanism is not well defined. Here, we demonstrate that transcription factors GLK1 and GLK2 interact with and are phosphorylated by the BRASSINOSTEROID insensitive2 (BIN2). The loss-of-function mutant of BIN2 and its homologs, bin2-3 bil1 bil2, displays abnormal chloroplast development, whereas the gain-of-function mutant, bin2-1, exhibits insensitivity to BR-induced de-greening and reduced numbers of thylakoids per granum, suggesting that BIN2 positively regulates chloroplast development. Furthermore, BIN2 phosphorylates GLK1 at T175, T238, T248, and T256, and mutations of these phosphorylation sites alter GLK1 protein stability and DNA binding and impair plant responses to BRs/darkness. On the other hand, BRs and darkness repress the BIN2-GLK module to enhance BR/dark-mediated de-greening and impair the formation of the photosynthetic apparatus. Our results thus provide a mechanism by which BRs modulate photomorphogenesis and chloroplast development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Cloroplastos/metabolismo , Escuridão , Transdução de Sinal Luminoso , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Cotilédone/fisiologia , Estabilidade Enzimática , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Fatores de Transcrição/genética , Transcrição Gênica
17.
Nat Commun ; 12(1): 5858, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615886

RESUMO

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica , Plântula/metabolismo , Esteroides Heterocíclicos , Fatores de Transcrição/metabolismo
18.
Plant J ; 59(6): 930-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19473327

RESUMO

Arabidopsis has 34 genes encoding proteins related to rapid alkalinization factor (RALF), a peptide growth factor. One of those genes (AtRALF23) is significantly downregulated by brassinolide (BL) treatment of Arabidopsis seedlings or in mutant seedlings expressing a constitutively active form of BES1, a transcriptional effector of the brassinosteroid signaling pathway. Overexpression of AtRALF23 impairs BL-induced hypocotyl elongation in seedlings, and mature overexpressing plants are shorter and bushier. Overexpression of AtRALF23 produces slower growing seedlings, with roots that have reduced capacity to acidify the rhizosphere. AtRALF23 encodes a 138-aa protein, and when an epitope-tagged form (AtRALF23-myc) was expressed in transgenic plants, the protein was processed to release a C-terminal peptide. The presumed junction between the precursor and the processed peptide contains a recognition site for site-1 protease (AtS1P), a plant subtilisin-like serine protease (subtilase). When AtRALF23-myc was expressed in the background of a site-1 protease mutant (s1p-3), or when the AtS1P recognition site (RRIL) was mutated (RR --> GG) and expressed in a wild-type background, the precursor was not cleaved, and the bushy phenotype was not produced. A fluorogenic peptide representing the presumed subtilase recognition site in AtRALF23 was cleaved in vitro by AtS1P. Thus, BL downregulates AtRALF23 expression, presumably relieving the growth-retarding effect of a peptide growth factor, which is processed from a larger precursor protein by AtS1P.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides , Colestanóis/farmacologia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Reguladores de Crescimento de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Alinhamento de Sequência , Esteroides Heterocíclicos/farmacologia
19.
Bio Protoc ; 9(15): e3318, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654825

RESUMO

Post-translational modifications play important roles in controlling protein function and can lead to altered protein stability. Protein stability can be determined after treatment with the protein synthesis inhibitor Cycloheximide. Cycloheximide is a translational inhibitor that inhibits protein synthesis via cytoplasmic ribosomes. Here we describe how to measure the stability of MYC2 in the context of regulation by FERONIA receptor kinase. First, we describe how to measure MYC2 stability in wild-type and feronia mutant; then we describe similar assays in transgenic plants expressing MYC2-FLAG and MYC2A12-FLAG (12 FERONIA phosphorylation sites are mutated to Alanine and the mutant protein is stabilized). MYC2 can be induced by mechanical touch, which can be a confounding factor in protein level measurement. In this protocol, we take that into consideration and try to achieve more accurate measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA