Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 29(5): 242-254, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052973

RESUMO

Context: The Da-yuan-yin (DYY) decoction is a classical prescription of traditional Chinese medicine that has antipyretic and anti-inflammatory effects. Network Pharmacology (NP) is an emerging discipline based on system-biology theory and biosystem network analysis that researchers can use to predict drug-action targets and mechanisms. Objective: The study intended to use NP evaluate the protective effects of the fifth eluting fraction of the supernatant of the DYY decoction (DYY-5) for mice induced with acute lung injury (ALI) using lipopolysaccharide (LPS) and to explore DYY-5's mechanisms. Design: The research team performed an animal study. Setting: The study took place at the College of Pharmaceutical Science at Soochow University in Suzhou, China. Animals: The animals were 42 male Balb/c mice, about 20 to 25 g in weight. Intervention: The research team: instilled 2 mg/kg of LPS intratracheally (i.t.) to induce ALI. The team divided the mice into seven groups of six mice: (1) a control group; (2) a negative control group-the DYY-5 group with mice treated only with a high dosage, 60 mg/kg, of DYY-5 to investigate the effects of DYY-5 on normal mice; (3) the positive control group, the LPS group, with induced ALI but no treatments; (4) the LPS+60 mg/kg-DYY-5 group with induced ALI treated with a high dosage of DYY-5; (5) the LPS+30 mg/kg-DYY-5 group with induced ALI treated with a medium dosage of DYY-5; (6) the LPS+15 mg/kg-DYY-5 group with induced ALI treated with a low dosage of DYY-5; and (7) a reference drug control group, the LPS+DXM group, with induced ALI treated with 5 mg/kg of dexamethasone (DXM). Outcome Measures: The research team: (1) determined the chemical components of DYY; (2) identified the anticomplementary activities of DYY-5; (3) took lung specimens, serum, and bronchoalveolar lavage fluid (BALF) from the mice for histopathological examination, Western blot, and biochemical analysis; (4) measured total protein concentrations and lung W/D ratios; (5) measured the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) using quantitative real-time polymerase chain reaction (PCR); (6) measured the levels of pro-inflammatory and anti-inflammatory factors, the activity of myeloperoxidase (MPO) and superoxide dismutase (SOD), and the levels of complements, including complements 3 (C3), C3c, C5a, C5aR1, and C5b-9, using kits; (7) analyzed the levels of nuclear factor-kappa B (NF-κB) and IkB kinase (IKK) using Western blot; and (8) used network pharmacology (NP) to predict DYY-5's mechanisms and potential targets. Results: The study's results were consistent with the NP analysis, which reflected the multitarget and multipathway characteristics of DYY-5 in alleviating ALI. The LPS+30 mg/kg-DYY-5 group had significantly lower lung wet-to-dry (W/D) ratios and total protein concentrations in BALF than the LPS group did, with P < .01 and P < .0001, respectively as did the LPS+60 mg/kg-DYY-5 group (both P < .0001). The 60 mg/kg of DYY-5 compared to the LPS group: (1) regulated the levels tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-1 beta (IL-1ß), with all P < .0001, anti-inflammatory factors-IL-4 (P < .05), IL-10 (P < .001), and IL-13 (P < .001); (2) increased the activity of SOD (P < .0001) and decreased the activity of MPO (P < .0001) and the expressions of iNOS and COX-2 mRNA (both P < .01); (3) blocked the activation of NF-κB and IKK; and (4) alleviated the pathological changes in the lung tissue, by reducing the depositions of C3c and decreasing the levels of C3, C5a and C5aR1 (all P < .0001), C5b-9 (P < .001) and C3c (P < .01) in serum. Conclusions: The protective effects of DYY-5 on ALI were related to antioxidation, anti-complementary activities, and regulation of inflammatory factors through the IKK/NF-κB signal pathway. DYY-5 may be useful as a potential therapeutic agent for treating ALI in clinics.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Masculino , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Lipopolissacarídeos , Ciclo-Oxigenase 2/efeitos adversos , Complexo de Ataque à Membrana do Sistema Complemento/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos BALB C , RNA Mensageiro , Superóxido Dismutase
2.
Pharm Biol ; 61(1): 228-240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655330

RESUMO

CONTEXT: Da-Yuan-Yin is a Chinese traditional prescription. OBJECTIVE: This study explores the therapeutic effects of the Da-Yuan-Yin decoction polyphenol fraction (DYY-4) on acute lung injury (ALI) in mice induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: The mice (n = 10) were orally administrated with DYY-4 (15, 30, and 60 mg/kg) or DXM (5 mg/kg), half an hour after LPS (2 mg/kg) instilled intratracheally. The protein content and the levels of inflammatory factors, the levels of complements, the mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the level of myeloperoxidase (MPO) and superoxide dismutase (SOD), the expression of the IkB kinase (IKK) and nuclear factor-kappa B (NF-κB), the lung wet-to-dry weight (W/D) ratio and lung tissue were evaluated, 24 h after LPS challenge. Network pharmacology predicted potential targets. RESULTS: DYY-4 (30, 60 mg/kg, p < 0.01, p < 0.01) decreased the lung W/D ratio, total protein concentration, the levels of C3, C3c and C5a, the levels of TNF-α, IL-6, and IL-1ß, while increased the levels of IL-4 and IL-10. DYY-4 (60 mg/kg) decreased the levels of C5aR1, C5b-9 and COX-2 mRNA (p < 0.05), the levels of MPO and iNOS mRNA, the activation of the IKK/NF-κB pathway (p < 0.01), and increased the levels of IL-13 and SOD (p < 0.01). DYY-4 (60 mg/kg) relieved the lung tissue pathological changes and reduced the C3c deposition. DISCUSSION AND CONCLUSIONS: Network pharmacology combined with animal experiments revealed the targets of DYY-4 alleviating ALI.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Polifenóis/efeitos adversos , Ciclo-Oxigenase 2/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão , Superóxido Dismutase , RNA Mensageiro
3.
J Pharmacol Sci ; 140(3): 228-235, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31358372

RESUMO

Acute lung injury (ALI) results from various factors including uncontrolled pulmonary inflammation, oxidative damage and the over-activated complement with high mortality rates. Jaceosidin was a flavonoid compound with significant anti-complement activity. We aimed to investigate the therapeutic effects of Jaceosidin on ALI induced by lipopolysaccharide (LPS). Mice were orally administrated with Jaceosidin (15, 30 and 60 mg/kg) after LPS challenge. 24 h after LPS challenge, Jaceosidin could significantly decrease the lung wet-to-dry weight (W/D) ratio and the protein concentration in bronchoalveolar lavage fluid (BALF). Jaceosidin could down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), together with up-regulation the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) in BALF. Jaceosidin could significantly decrease the levels of myeloperoxidase (MPO), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB), COX-2 mRNA and NF-κB p65 mRNA together with increasing the activity of catalase (CAT). Additionally, Jaceosidin attenuated lung histopathological changes, inhibited the expressions of COX-2 and NF-κB p65 and reduced complement deposition with decreasing the levels of complement 3 (C3) and complement 3c (C3c) in serum. These data suggest that Jaceocidin may dampen the inflammatory response and decrease the levels of complement together with the antioxidant activity following LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Ethnopharmacol ; 332: 118392, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38797378

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Da-yuan-yin decoction (DYY) is a classical traditional Chinese medicine prescription for ulcerative colitis (UC). AIM OF STUDY: This study explored the protective effects and mechanisms of DYY on UC. MATERIALS AND METHODS: The mice were fed 2.5% dextran sulfate sodium (DSS) for 7 days to establish UC. On the second day, DYY (0.4 g/kg, 0.8 g/kg, 1.6 g/kg) was orally administered daily for 7 consecutive days. The colon tissues and serum were measured by histopathological examination and biochemical analysis. RESULTS: DYY significantly reduced the disease activity index (DAI) and severity of colon shortening and alleviated pathological changes in the colon tissue. DYY restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3). DYY remarkably decreased the level of lipopolysaccharide (LPS), Lactic acid (LA), circulating free DNA (cfDNA), complement (C3, C3a, C3c, C3aR1, C5a and C5aR1) and regulated the levels of inflammatory cytokines in serum. DYY significantly inhibited the expressions of nuclear factor kappa-B p65 (NF-κB p65) and Toll-like receptor 4 (TLR4), citrullinated histone H3 (CitH3) and myeloperoxidase (MPO), reactive oxygen species (ROS) peptidylarginine deiminase 4 (PAD4) and CD 11b, the mRNA levels of PADI4, MPO and ELANE in colon tissues. CONCLUSIONS: DYY significantly attenuated DSS-induced UC, which was related with regulating the inflammatory response by the inhibition of complement activation, the LPS-TLR4/NF-κB signaling pathway and neutrophil extracellular traps (NETs) formation. DYY is a potential therapeutic agent for UC.


Assuntos
Colite Ulcerativa , Ativação do Complemento , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Lipopolissacarídeos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Receptor 4 Toll-Like/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Camundongos , Ativação do Complemento/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia
5.
Curr Pharm Biotechnol ; 21(8): 741-747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31793420

RESUMO

BACKGROUND: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. METHODS: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, ß-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. RESULTS: Our results indicated that film configurations can preserve the activity of ß-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % ß-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of ß-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. CONCLUSION: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


Assuntos
Enzimas Imobilizadas/química , Etilenoglicol/química , Gelatina/química , beta-Glucosidase/química , Enzimas Imobilizadas/metabolismo , Gelatina/ultraestrutura , Umidade , Microscopia Eletrônica de Varredura , Estabilidade Proteica , Resistência à Tração , Difração de Raios X , beta-Glucosidase/metabolismo
6.
Neurosci Lett ; 635: 44-50, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743798

RESUMO

Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum.


Assuntos
Medo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Pirazóis/uso terapêutico , Quinolinas/uso terapêutico , Privação do Sono/psicologia , Sono REM , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Pirazóis/farmacologia , Quinolinas/farmacologia , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Privação do Sono/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA