Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8010): 74-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693415

RESUMO

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

2.
Phys Rev Lett ; 131(1): 016201, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478456

RESUMO

In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.

3.
Adv Mater ; 36(11): e2303122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37522646

RESUMO

Nonlinear optical crystals lie at the core of ultrafast laser science and quantum communication technology. The emergence of 2D materials provides a revolutionary potential for nonlinear optical crystals due to their exceptionally high nonlinear coefficients. However, uncontrolled stacking orders generally induce the destructive nonlinear response due to the optical phase deviation in different 2D layers. Therefore, conversion efficiency of 2D nonlinear crystals is typically limited to less than 0.01% (far below the practical criterion of >1%). Here, crystalline films of rhombohedral boron nitride (rBN) with parallel stacked layers are controllably synthesized. This success is realized by the utilization of vicinal FeNi (111) single crystal, where both the unidirectional arrangement of BN grains into a single-crystal monolayer and the continuous precipitation of (B,N) source for thick layers are guaranteed. The preserved in-plane inversion asymmetry in rBN films keeps the in-phase second-harmonic generation field in every layer and leads to a record-high conversion efficiency of 1% in the whole family of 2D materials within the coherence thickness of only 1.6 µm. The work provides a route for designing ultrathin nonlinear optical crystals from 2D materials, and will promote the on-demand fabrication of integrated photonic and compact quantum optical devices.

4.
Nat Nanotechnol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844662

RESUMO

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

5.
Nat Commun ; 15(1): 4130, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755189

RESUMO

Compared to transition metal dichalcogenide (TMD) monolayers, rhombohedral-stacked (R-stacked) TMD bilayers exhibit remarkable electrical performance, enhanced nonlinear optical response, giant piezo-photovoltaic effect and intrinsic interfacial ferroelectricity. However, from a thermodynamics perspective, the formation energies of R-stacked and hexagonal-stacked (H-stacked) TMD bilayers are nearly identical, leading to mixed stacking of both H- and R-stacked bilayers in epitaxial films. Here, we report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates. The bilayer growth is realized by a high flux feeding of the tungsten source at high temperature on substrates. The R-stacked configuration is achieved by the symmetry breaking in a-plane sapphire, where the influence of atomic steps passes through the lower TMD layer and controls the R-stacking of the upper layer. The as-grown R-stacked bilayers show up-to-30-fold enhancements in carrier mobility (34 cm2V-1s-1), nearly doubled circular helicity (61%) and interfacial ferroelectricity, in contrast to monolayer films. Our work reveals a growth mechanism to obtain stacking-controlled bilayer TMD single crystals, and promotes large-scale applications of R-stacked TMD.

6.
Science ; 385(6704): 99-104, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963849

RESUMO

Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).

7.
Science ; 384(6700): 1100-1104, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843317

RESUMO

One-dimensional transition metal dichalcogenides exhibiting an enhanced bulk photovoltaic effect have the potential to exceed the Shockley-Queisser limit efficiency in solar energy harvest within p-n junction architectures. However, the collective output of these prototype devices remains a challenge. We report on the synthesis of single-crystalline WS2 ribbon arrays with defined chirality and coherent polarity through an atomic manufacturing strategy. The chirality of WS2 ribbon was defined by substrate couplings into tunable armchair, zigzag, and chiral species, and the polarity direction was determined by the ribbon-precursor interfacial energy along a coherent direction. A single armchair ribbon showed strong bulk photovoltaic effect and the further integration of ~1000 aligned ribbons with coherent polarity enabled upscaling of the photocurrent.

8.
Sci Bull (Beijing) ; 68(2): 173-179, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653218

RESUMO

Polarization-sensitive photodetectors, with the ability of identifying the texture-, stress-, and roughness-induced light polarization state variation, displace unique advantages in the fields of national security, medical diagnosis, and aerospace. The utilization of in-plane anisotropic two-dimensional (2D) materials has led the polarization photodetector into a polarizer-free regime, and facilitated the miniaturization of optoelectronic device integration. However, the insufficient polarization ratio (usually less than 10) restricts the detection resolution of polarized signals. Here, we designed a sub-wavelength array (SWA) structure of 2D germanium selenium (GeSe) to further improve its anisotropic sensitivity, which boosts the polarized photocurrent ratio from 1.6 to 18. This enhancement comes from the combination of nano-scale arrays with atomic-scale lattice arrangement at the low-symmetric direction, while the polarization-sensitive photoresponse along the high-symmetric direction is strongly suppressed due to the SWA-caused depolarization effect. Our mechanism study revealed that the SWA can improve the asymmetry of charge distribution, attenuate the matrix element in zigzag direction, and the localized surface plasma, which elevates the photo absorption and photoelectric transition probability along the armchair direction, therefore accounts for the enhanced polarization sensitivity. In addition, the photodetector based on GeSe SWA exhibited a broad power range of 40 dB at a near-infrared wavelength of 808 nm and the ability of weak-light detection under 0.1 LUX of white light (two orders of magnitude smaller than pristine 2D GeSe). This work provides a feasible guideline to improve the polarization sensitivity of 2D materials, and will greatly benefit the development of polarized imaging sensors.

9.
Sci Bull (Beijing) ; 68(14): 1514-1521, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37438155

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.

10.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828069

RESUMO

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

11.
Nat Commun ; 13(1): 1007, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197463

RESUMO

The precise precursor supply is a precondition for controllable growth of two-dimensional (2D) transition metal dichalcogenides (TMDs). Although great efforts have been devoted to modulating the transition metal supply, few effective methods of chalcogen feeding control were developed. Here we report a strategy of using active chalcogen monomer supply to grow high-quality TMDs in a robust and controllable manner, e.g., MoS2 monolayers perform representative photoluminescent circular helicity of ~92% and electronic mobility of ~42 cm2V-1s-1. Meanwhile, a uniform quaternary TMD alloy with three different anions, i.e., MoS2(1-x-y)Se2xTe2y, was accomplished. Our mechanism study revealed that the active chalcogen monomers can bind and diffuse freely on a TMD surface, which enables the effective nucleation, reaction, vacancy healing and alloy formation during the growth. Our work offers a degree of freedom for the controllable synthesis of 2D compounds and their alloys, benefiting the development of high-end devices with desired 2D materials.

12.
Adv Mater ; 31(46): e1905079, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583772

RESUMO

Energy-saving white lighting from the efficient intrinsic emission of semiconductors is considered as a next-generation lighting source. Currently, white-light emission can be composited with a blue light-emitting diode and yellow phosphor. However, this solution has an inevitable light loss, which makes the improvement of the energy utilization efficiency more difficult. To deal with this problem, intrinsic white-light emission (IWE) in a single solid material gives a possibility. Here, an all-inorganic lead-free CsCu2 I3 perovskite single crystal (SC) with stable and high photoluminescence quantum yield (≈15.7%) IWE through strongly localized 1D exciton recombination is synthesized. In the CsCu2 I3 , the Cu-I octahedron, which provides most of electron states, is isolated by Cs atoms in two directions to form a 1D electronic structure, resulting a high radiation recombination rate of excitons. With this electronic structure design, the CsCu2 I3 SCs have great potential in energy-saving white lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA