Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2209056119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914139

RESUMO

Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.


Assuntos
Eletricidade , Peróxido de Hidrogênio , Radical Hidroxila , Água , Atmosfera/química , Umidade , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Espectrometria de Massas , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/química , Tamanho da Partícula , Solo/química , Água/química
2.
Analyst ; 149(11): 3195-3203, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651605

RESUMO

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.


Assuntos
Vesículas Extracelulares , Gelatina , Nanopartículas , Tetraspanina 30 , Gelatina/química , Vesículas Extracelulares/química , Vesículas Extracelulares/imunologia , Nanopartículas/química , Humanos , Tetraspanina 30/metabolismo , Acústica , Dispositivos Lab-On-A-Chip
3.
Anal Chem ; 94(16): 6347-6354, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35427108

RESUMO

Liquid droplets rectors have been used in clinical diagnosis, high throughput screening and bioassay. However, it is challenging for droplet reactors to be used in practical applications due to the difficulty of uniformly mixing ultrasmall volumes of samples and the lack of rapid and high-precision detection protocols. Here, we have developed an acoustic droplet system for rapid and efficient biological detection and chemical screening. By employing acoustic wave devices, rapid and nondestructive uniform mixing of ∼nL-µL droplets can be achieved. By the acoustophoretic force, the perturbation of the droplets can quickly concentrate the sample and increase the detection limit by five times. Through the color reaction and the coordinated detection of photodiodes, we have developed a biomarker detection protocol with short reaction time and high accuracy. As a proof-of-concept application, we demonstrated that this system can detect ultrasmall or low-abundance samples faster and more accurately, highlighting its wide application in analytical chemistry, basic research, and clinical medicine.


Assuntos
Técnicas Analíticas Microfluídicas , Acústica , Bioensaio , Ensaios de Triagem em Larga Escala , Som
4.
Analyst ; 145(12): 4138-4147, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409799

RESUMO

Cancer immunotherapy has achieved great success in hematological cancers. However, immune cells are a highly heterogeneous population and can vary highly in clonal expansion, migration and function status, making it difficult to evaluate and predict patient response to immune therapy. Conventional technologies only yield information on the average population information of the treatment, masking the heterogeneity of the individual T cell activation status, the formation of immune synapse, as well as the efficacy of tumor cell killing at the single-cell level. To fully interrogate these single-cell events in detail, herein, we present a microfluidic microwell array device that enables the massive parallel analysis of the immunocyte's heterogeneity upon its interaction pairs with tumor cells at the single-cell level. By precisely controlling the number and ratio of tumor cells and T cells, our technique can interrogate the dynamics of the CD8+ T cell and leukemia cell interaction inside 6400 microfluidic wells simultaneously. We have demonstrated that by investigating the interactions of T cell and tumor cell pairs at the single-cell level using our microfluidic chip, details hidden in bulk investigations, such as heterogeneity in T cell killing capacity, time-dependent killing dynamics, as well as drug treatment-induced dynamic shifts, can be revealed. This method opens up avenues to investigate the efficacy of cancer immunotherapy and resistance at the single-cell level and can explore our understanding of fundamental cancer immunity as well as determine cancer immunotherapy efficacy for personalized therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Leucemia/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Dispositivos Lab-On-A-Chip , Leucemia/patologia , Camundongos Endogâmicos C57BL , Microfluídica/instrumentação , Microfluídica/métodos , Análise de Célula Única
5.
Nanotechnology ; 31(49): 495102, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990263

RESUMO

Constructing biological affinity devices is considered as an effective strategy for isolating circulating tumor cells (CTCs), and electrospun nanofibers (ESNFs) have recently received attention. However, the current research focuses on polymer fibers, and fabricating stimuli-responsive inorganic nanofibers for cancer diagnosis and analysis is still challenging. In this work, Zn-Mn oxide nanofibers (ZnMnNFs) are used to capture and purify cancer cells after modification with specific antibodies. Then, the hierarchical nanofibers are degraded by reductive weak acid to release the captured cells efficiently without residues. Fusion of Zn and Mn, two transition metals, enhances the surface activity of oxides so that ZnMnNFs are easier to be degraded and modified. By using MCF-7 cancer cells, the cell capture efficiency of ZnMnNFs is up to 88.2%. Furthermore, by using citric acid, it is discovered that, by comparison with Mn oxide nanofibers, the cell release efficiency of ZnMnNFs is improved to 95.1% from 15.4%. In addition, the viability of released cells exceeds 90%. Lastly, the robustness of ZnMnNFs substrates is tested in peripheral blood from breast cancer patients (BCP) and colorectal cancer patients (CCP). Combined with fluorescence labeling, CTCs are confirmed to be isolated from all the clinical samples. This is the first trial of using ternary inorganic ESNFs for cancer cell capture. It is anticipated that the degradable ESNFs will provide biocompatible theranostic platforms and overcome the current limitations of cell release for high-precision gene analysis.


Assuntos
Separação Celular/métodos , Manganês/química , Nanofibras/química , Células Neoplásicas Circulantes/patologia , Óxidos/química , Zinco/química , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Sobrevivência Celular , Feminino , Humanos , Células MCF-7
6.
Nano Lett ; 19(4): 2215-2222, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30543300

RESUMO

Zika virus (ZIKV) has emerged as a global health threat due to its unexpected causal link to devastating neurological disorders such as fetal microcephaly; however, to date, no approved vaccine or specific treatment is available for ZIKV infection. Here we develop a biomimetic nanodecoy (ND) that can trap ZIKV, divert ZIKV away from its intended targets, and inhibit ZIKV infection. The ND, which is composed of a gelatin nanoparticle core camouflaged by mosquito medium host cell membranes, effectively adsorbs ZIKV and inhibits ZIKV replication in ZIKV-susceptible cells. Using a mouse model, we demonstrate that NDs significantly attenuate the ZIKV-induced inflammatory responses and degenerative changes and thus improve the survival rate of ZIKV-challenged mice. Moreover, by trapping ZIKV, NDs successfully prevent ZIKV from passing through physiologic barriers into the fetal brain and thereby mitigate ZIKV-induced fetal microcephaly in pregnant mice. We anticipate that this study will provide new insights into the development of safe and effective protection against ZIKV and various other viruses that threaten public health.


Assuntos
Microcefalia/prevenção & controle , Nanopartículas/administração & dosagem , Infecção por Zika virus/prevenção & controle , Zika virus/efeitos dos fármacos , Animais , Biomimética/métodos , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Culicidae/efeitos dos fármacos , Culicidae/virologia , Modelos Animais de Doenças , Feminino , Feto , Gelatina/administração & dosagem , Gelatina/química , Humanos , Camundongos , Microcefalia/patologia , Microcefalia/virologia , Nanopartículas/química , Gravidez , Zika virus/patogenicidade , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
7.
Anal Chem ; 91(11): 7097-7103, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31083981

RESUMO

The precise transportation of small-volume liquids in microfluidic and nanofluidic systems remains a challenge for many applications, such as clinical fluidical analysis. Here, we present a reliable digital pump that utilizes acoustic streaming induced by localized fluid-substrate interactions. By locally generating streaming via a C-shaped interdigital transducer (IDT) within a triangle-edged microchannel, our acoustofluidic pump can generate a stable unidirectional flow (∼nanoliter per second flow rate) with a precise digital regulation (∼second response time), and it is capable of handling aqueous solutions (e.g., PBS buffer) as well as high viscosity liquids (e.g., human blood) with a nanoliter-scale volume. Along with our acoustofluidic pump's low cost, programmability, and capacity to control small-volumes at high precision, it could be widely used for point-of-care diagnostics, precise drug delivery, and fundamental biomedical research.

8.
Electrophoresis ; 40(6): 961-968, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30155963

RESUMO

Assays toward single-cell analysis have attracted the attention in biological and biomedical researches to reveal cellular mechanisms as well as heterogeneity. Yet nowadays microfluidic devices for single-cell analysis have several drawbacks: some would cause cell damage due to the hydraulic forces directly acting on cells, while others could not implement biological assays since they could not immobilize cells while manipulating the reagents at the same time. In this work, we presented a two-layer pneumatic valve-based platform to implement cell immobilization and treatment on-chip simultaneously, and cells after treatment could be collected non-destructively for further analysis. Target cells could be encapsulated in sodium alginate droplets which solidified into hydrogel when reacted with Ca2+ . The size of hydrogel beads could be precisely controlled by modulating flow rates of continuous/disperse phases. While regulating fluid resistance between the main channel and passages by the integrated pneumatic valves, on-chip capture and release of hydrogel beads was implemented. As a proof of concept for on-chip single-cell treatments, we showed cellular live/dead staining based on our devices. This method would have potential in single cell manipulation for biochemical cellular assays.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Desenho de Equipamento , Células HCT116 , Humanos
9.
Nanotechnology ; 30(8): 084001, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523921

RESUMO

We report a digital acoustofluidic device for on-demand and oil-free droplet generation. By applying a programmed radio frequency signal to a circular interdigital transducer, the dynamic focused acoustic pressure profiles generated rise up and dispense sample liquids from a reservoir to dynamically eject the droplets into the air. Our device allows droplets to be dispensed on demand with precisely controlled generation time and sequence, and accurate droplet volume. Moreover, we also demonstrate the generation of a droplet with a volume of 24 pL within 10 ms, as well as the encapsulation of a single cell into droplets. This acoustofluidic droplet generation technique is simple, biocompatible, and enables the on-demand droplet generation and encapsulation of many different biological materials with precise control, which is promising for single cell sampling and analysis applications.

10.
Nanotechnology ; 30(33): 335101, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30965310

RESUMO

Circulating tumor cells (CTCs) are important for the detection and treatment of cancer. Nevertheless, a low density of circulating tumor cells makes the capture and release of CTCs an obstacle. In this work, TiO2 nanopillar arrays coated with gelatin film were synthesized for efficient capture and undamaged release of circulating tumor cells. The scanning electron microscope and atomic force microscope images demonstrate that the substrate has a certain roughness. The interaction between the cell membrane and the nanostructure substrate contributes to the efficient capture of CTC (capture efficiency up to 94.98%). The gelatin layer has excellent biocompatibility and can be rapidly digested by matrix metalloproteinase (MMP9), which realizes the non-destructive release of CTCs (0.1 mg ml-1, 5 min, nearly 100% release efficiency, activity 100%). Therefore, by our strategy, the CTCs can be efficiently captured and released undamaged, which is important for subsequent analysis.


Assuntos
Separação Celular/métodos , Gelatina/química , Nanoestruturas/química , Células Neoplásicas Circulantes/química , Titânio/química , Anticorpos Imobilizados/química , Linhagem Celular Tumoral , Humanos , Nanoestruturas/ultraestrutura , Neoplasias/sangue , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia
11.
Nanotechnology ; 29(13): 134004, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29334363

RESUMO

Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.


Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida/métodos , Terapia com Luz de Baixa Intensidade/métodos , Nanopartículas de Magnetita/uso terapêutico , Terapia de Alvo Molecular/métodos , Nanomedicina Teranóstica/métodos , Animais , Transporte Biológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Feminino , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/metabolismo , Humanos , Evasão da Resposta Imune , Células MCF-7 , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nanotechnology ; 29(43): 434001, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30087212

RESUMO

Non-invasive prenatal diagnostics (NIPD) has been an emerging field for prenatal diagnosis research. Carrying the whole genome coding of the fetus, fetal nucleated red blood cells (FNRBCs) have been pursued as a surrogate biomarker traveling around in maternal blood. Here, by combining a unique microbead-based centrifugal separation and enzymatic release, we demonstrated a novel method for FNRBC isolation from the blood samples. First, the gelatin-coated silica microbeads were modified with FNRBC-specific antibody (anti-CD147) to capture the target cells in the blood samples. Then, the density difference between microbead-bound FNRBCs and normal blood cells enables the purification of FNRBCs via an improved high-density percoll-based separation. The non-invasive release of FNRBCs can then be achieved by enzymatically degrading the gelatin film on the surface of the microbeads, allowing a gentle release of the captured target cells with as high as 84% efficiency and ∼80% purity. We further applied it to isolate fetal cells from maternal peripheral blood. The released cells were analyzed by real-time polymerase chain reaction to verify their fetal origin and fluorescent in situ hybridization to detect fetal chromosome disorders. This straightforward and reliable alternative platform for FNRBC detection may have the potential for realizing facile NIPD.


Assuntos
Separação Celular/métodos , Eritrócitos/citologia , Feto/citologia , Diagnóstico Pré-Natal/métodos , Anticorpos Imobilizados/química , Basigina/análise , Separação Celular/economia , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Eritrócitos/metabolismo , Feminino , Feto/metabolismo , Humanos , Hibridização in Situ Fluorescente , Microesferas , Gravidez , Diagnóstico Pré-Natal/economia
13.
Nanotechnology ; 29(8): 084002, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29339567

RESUMO

Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

14.
Angew Chem Int Ed Engl ; 57(4): 986-991, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29193651

RESUMO

Here, we present a platelet-facilitated photothermal tumor therapy (PLT-PTT) strategy, in which PLTs act as carriers for targeted delivery of photothermal agents to tumor tissues and enhance the PTT effect. Gold nanorods (AuNRs) were first loaded into PLTs by electroporation and the resulting AuNR-loaded PLTs (PLT-AuNRs) inherited long blood circulation and cancer targeting characteristics from PLTs and good photothermal property from AuNRs. Using a gene-knockout mouse model, we demonstrate that the administration of PLT-AuNRs and localizing laser irradiation could effectively inhibit the growth of head and neck squamous cell carcinoma (HNSCC). In addition, we found that the PTT treatment augmented PLT-AuNRs targeting to the tumor sites and in turn, improved the PTT effects in a feedback manner, demonstrating the unique self-reinforcing characteristic of PLT-PTT in cancer therapy.


Assuntos
Plaquetas/química , Lasers , Fototerapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Plaquetas/citologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Ouro/química , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia Confocal , Nanotubos/química , Nanotubos/toxicidade , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Células RAW 264.7 , Receptor do Fator de Crescimento Transformador beta Tipo I/deficiência , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
15.
Nanotechnology ; 27(8): 085106, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26820630

RESUMO

Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle 'stealth'. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.


Assuntos
Materiais Biomiméticos/farmacocinética , Portadores de Fármacos/farmacocinética , Membrana Eritrocítica/química , Óxido Ferroso-Férrico/farmacocinética , Nanopartículas Metálicas/química , Animais , Transporte Biológico , Materiais Biomiméticos/síntese química , Linhagem Celular , Portadores de Fármacos/síntese química , Ferro/análise , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Sistema Fagocitário Mononuclear/fisiologia , Polietilenoglicóis/química , Espectrofotometria Atômica
16.
Small ; 11(46): 6225-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26488923

RESUMO

For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as "accelerated blood clearance (ABC)" where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane-coated Fe(3)O(4) nanoparticles (Fe(3)O(4) @RBC NPs) rely on CD47, which is a "don't eat me" marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein-alpha (SIRP-α) receptor. Fe(3)O(4) @RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe(3)O(4) @RBC NPs does not elicit immune responses on neither the cellular level (myeloid-derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane-camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance.


Assuntos
Materiais Biomiméticos/farmacologia , Circulação Sanguínea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Membrana Eritrocítica/metabolismo , Nanopartículas/química , Animais , Compostos Férricos/química , Hidrodinâmica , Evasão da Resposta Imune , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Teste de Materiais , Camundongos , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Células RAW 264.7 , Eletricidade Estática , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
17.
Microsyst Nanoeng ; 10(1): 143, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39389950

RESUMO

The high-frequency and high-quality factor characteristics of bulk acoustic wave (BAW) resonators have significantly advanced their application in sensing technologies. In this work, a fluidic sensor based on a BAW resonator structure is fabricated and investigated. Embedded microchannels are formed beneath the active area of the BAW device without the need for external processes. As liquid flows through the microchannel, pressure is exerted on the upper wall (piezoelectric film) of the microchannel, which causes a shift in the resonant frequency. Using density functional theory, we revealed the intrinsic mechanism by which piezoelectric film deformation influences BAW resonator performance. Theoretically, the upwardly convex piezoelectric film caused by liquid flow can increase the resonant frequency. The experimental results obtained with ethanol solutions of different concentrations reveal that the sensor, which operates at a high resonant frequency of 2.225 GHz, achieves a remarkable sensitivity of 5.1 MHz/% (221 ppm/%), with an ultrahigh linearity of 0.995. This study reveals the intrinsic mechanism of liquid sensing based on BAW resonators, highlights the potential of AlN/Al0.8Sc0.2N composite film BAW resonators in liquid sensing applications and offers insights for future research and development in this field.

18.
J Colloid Interface Sci ; 675: 192-206, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38968636

RESUMO

Chemotherapy is a widely used cancer treatment, however, it can have notable side effects owing to the high-doses of drugs administered. Sonodynamic therapy (SDT) induced by sonosensitizers has emerged as a promising approach to treat cancer, however, there is limited research evaluating its therapeutic effects on human tumors. In this study, we introduced a dual therapy that combines low-dose chemotherapeutic drugs with enhanced sonodynamic therapy, utilizing barium titanate (BaTiO3, BTO) nanoparticles (NPs) as sonosensitizers to treat tumor organoids. We demonstrated that ultrasound could improve the cellular uptake of chemotherapy drugs, while the chemotherapeutic effect of the drugs made it easier for BTO NPs to enter tumor cells, and the dual therapy synergistically inhibited tumor cell viability. Moreover, different patient-derived tumor organoids exhibited different sensitivities to this therapy, highlighting the potential to evaluate individual responses to combination therapies prior to clinical intervention. Furthermore, this dual therapy exhibited therapeutic effects equivalent to those of high-dose chemotherapy drugs on drug-resistant tumor organoids and showed the potential to enhance the efficacy of killing drug-resistant tumors. In addition, the biosafety of the BTO NPs was successfully verified in live mice via oral administration. This evidence confirms the reliable and safe nature of the dual therapy approach, making it a feasible option for precise and personalized therapy in clinical applications.


Assuntos
Antineoplásicos , Compostos de Bário , Sobrevivência Celular , Organoides , Medicina de Precisão , Titânio , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Animais , Titânio/química , Titânio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Compostos de Bário/química , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Terapia por Ultrassom , Nanopartículas/química , Catálise , Relação Dose-Resposta a Droga , Tamanho da Partícula , Linhagem Celular Tumoral , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia
19.
ACS Appl Mater Interfaces ; 16(39): 53106-53115, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39312748

RESUMO

The presence of abnormally oriented grains (AOGs) in sputter-deposited aluminum scandium nitride (AlScN) films significantly degrades their physical properties, compromising the performance of bulk acoustic wave (BAW) devices. This study utilizes first-principles calculations to reveal that in tetrahedral wurtzite AlScN film-doped Sc atoms tend to aggregate at the second nearest-neighbor positions, forming dense ScN octahedral structures. The rock-salt (RS) ScN continued to grow due to further Sc aggregation. However, due to inadequate scandium flux, embryonic RS structures cannot be sustained, resulting in the nucleation of AOGs at the (111) faces of the octahedral ScN structure. Electron microscopy studies indicated that AOGs possess wurtzite structures and originate at tilted grain boundaries. These boundaries were characterized as RS ScN with more Sc atoms. This corroborated the theoretical predictions. BAW resonators and filters fabricated from sputter-deposited AlScN films demonstrate that AOGs degraded the piezoelectricity of AlScN, reducing the resonator's electromechanical coupling coefficient (Keff2). Measurements showed that AOG density increased from edge to center of the 8 in. wafer, resulting in a 3% decrease in average Keff2 in the resonators and a 137 MHz decrease in the filter bandwidth at 5 dB.

20.
Micromachines (Basel) ; 15(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793136

RESUMO

With the development of wireless communication, increasing signal processing presents higher requirements for radio frequency (RF) systems. Piezoelectric acoustic filters, as important elements of an RF front-end, have been widely used in 5G-generation systems. In this work, we propose a Sc0.2Al0.8N-based film bulk acoustic wave resonator (FBAR) for use in the design of radio frequency filters for the 5G mid-band spectrum with a passband from 3.4 to 3.6 GHz. With the excellent piezoelectric properties of Sc0.2Al0.8N, FBAR shows a large Keff2 of 13.1%, which can meet the requirement of passband width. Based on the resonant characteristics of Sc0.2Al0.8N FBAR devices, we demonstrate and fabricate different ladder-type FBAR filters with second, third and fourth orders. The test results show that the out-of-band rejection improves and the insertion loss decreases slightly as the filter order increases, although the frequency of the passband is lower than the predicted ones due to fabrication deviation. The passband from 3.27 to 3.47 GHz is achieved with a 200 MHz bandwidth and insertion loss lower than 2 dB. This work provides a potential approach using ScAlN-based FBAR technology to meet the band-pass filter requirements of 5G mid-band frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA