Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1459: 291-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017849

RESUMO

Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.


Assuntos
Variante 6 da Proteína do Fator de Translocação ETS , Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-ets , Proteínas Repressoras , Humanos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Animais , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
2.
Nucleic Acids Res ; 49(3): 1383-1396, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476375

RESUMO

Super-enhancers (SEs) mediate high transcription levels of target genes. Previous studies have shown that SEs recruit transcription complexes and generate enhancer RNAs (eRNAs). We characterized transcription at the human and murine ß-globin locus control region (LCR) SE. We found that the human LCR is capable of recruiting transcription complexes independently from linked globin genes in transgenic mice. Furthermore, LCR hypersensitive site 2 (HS2) initiates the formation of bidirectional transcripts in transgenic mice and in the endogenous ß-globin gene locus in murine erythroleukemia (MEL) cells. HS2 3'eRNA is relatively unstable and remains in close proximity to the globin gene locus. Reducing the abundance of HS2 3'eRNA leads to a reduction in ß-globin gene transcription and compromises RNA polymerase II (Pol II) recruitment at the promoter. The Integrator complex has been shown to terminate eRNA transcription. We demonstrate that Integrator interacts downstream of LCR HS2. Inducible ablation of Integrator function in MEL or differentiating primary human CD34+ cells causes a decrease in expression of the adult ß-globin gene and accumulation of Pol II and eRNA at the LCR. The data suggest that transcription complexes are assembled at the LCR and transferred to the globin genes by mechanisms that involve Integrator mediated release of Pol II and eRNA from the LCR.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , RNA/metabolismo , Transcrição Gênica , Globinas beta/genética , Adulto , Animais , Linhagem Celular Tumoral , Endorribonucleases/genética , Feto , Humanos , Fígado/embriologia , Fígado/metabolismo , Região de Controle de Locus Gênico , Camundongos Transgênicos , RNA/fisiologia , RNA Polimerase II/metabolismo , Globinas beta/biossíntese
3.
Bioessays ; 41(1): e1800164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500078

RESUMO

It is proposed that the multiple enhancer elements associated with locus control regions and super-enhancers recruit RNA polymerase II and efficiently assemble elongation competent transcription complexes that are transferred to target genes by transcription termination and transient looping mechanisms. It is well established that transcription complexes are recruited not only to promoters but also to enhancers, where they generate enhancer RNAs. Transcription at enhancers is unstable and frequently aborted. Furthermore, the Integrator and WD-domain containing protein 82 mediate transcription termination at enhancers. Abortion and termination of transcription at the multiple enhancers of locus control regions and super-enhancers provide a large pool of elongation competent transcription complexes. These are efficiently captured by strong basal promoter elements at target genes during transient looping interactions.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Região de Controle de Locus Gênico , RNA Polimerase II/metabolismo , Transcrição Gênica , Humanos , Globinas beta/genética
4.
PLoS Genet ; 12(4): e1005893, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27055116

RESUMO

Genome-wide association studies (GWASs) have discovered numerous single nucleotide polymorphisms (SNPs) associated with human complex disorders. However, functional characterization of the disease-associated SNPs remains a formidable challenge. Here we explored regulatory mechanism of a SNP on chromosome 9p21 associated with endometriosis by leveraging "allele-specific" functional genomic approaches. By re-sequencing 1.29 Mb of 9p21 region and scrutinizing DNase-seq data from the ENCODE project, we prioritized rs17761446 as a candidate functional variant that was in perfect linkage disequilibrium with the original GWAS SNP (rs10965235) and located on DNase I hypersensitive site. Chromosome conformation capture followed by high-throughput sequencing revealed that the protective G allele of rs17761446 exerted stronger chromatin interaction with ANRIL promoter. We demonstrated that the protective allele exhibited preferential binding affinities to TCF7L2 and EP300 by bioinformatics and chromatin immunoprecipitation (ChIP) analyses. ChIP assays for histone H3 lysine 27 acetylation and RNA polymerase II reinforced the enhancer activity of the SNP site. The allele specific expression analysis for eutopic endometrial tissues and endometrial carcinoma cell lines showed that rs17761446 was a cis-regulatory variant where G allele was associated with increased ANRIL expression. Our work illuminates the allelic imbalances in a series of transcriptional regulation from factor binding to gene expression mediated by chromatin interaction underlie the molecular mechanism of 9p21 endometriosis risk locus. Functional genomics on common disease will unlock functional aspect of genotype-phenotype correlations in the post-GWAS stage.


Assuntos
Desequilíbrio Alélico , Cromatina/genética , Cromossomos Humanos Par 9 , Endometriose/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
5.
J Cell Biochem ; 119(1): 712-722, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28657656

RESUMO

Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.


Assuntos
Proteínas de Ciclo Celular/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição TFII/metabolismo , Ciclo Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Fatores de Transcrição E2F/genética , Humanos , Células K562 , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição TFII/genética
6.
Blood Cancer Discov ; 4(1): 34-53, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350827

RESUMO

Distal enhancers play critical roles in sustaining oncogenic gene-expression programs. We identify aberrant enhancer-like activation of GGAA tandem repeats as a characteristic feature of B-cell acute lymphoblastic leukemia (B-ALL) with genetic defects of the ETV6 transcriptional repressor, including ETV6-RUNX1+ and ETV6-null B-ALL. We show that GGAA repeat enhancers are direct activators of previously identified ETV6-RUNX1+/- like B-ALL "signature" genes, including the likely leukemogenic driver EPOR. When restored to ETV6-deficient B-ALL cells, ETV6 directly binds to GGAA repeat enhancers, represses their acetylation, downregulates adjacent genes, and inhibits B-ALL growth. In ETV6-deficient B-ALL cells, we find that the ETS transcription factor ERG directly binds to GGAA microsatellite enhancers and is required for sustained activation of repeat enhancer-activated genes. Together, our findings reveal an epigenetic gatekeeper function of the ETV6 tumor suppressor gene and establish microsatellite enhancers as a key mechanism underlying the unique gene-expression program of ETV6-RUNX1+/- like B-ALL. SIGNIFICANCE: We find a unifying mechanism underlying a leukemia subtype-defining gene-expression signature that relies on repetitive elements with poor conservation between humans and rodents. The ability of ETV6 to antagonize promiscuous, nonphysiologic ERG activity may shed light on other roles of these key regulators in hematolymphoid development and human disease. See related commentary by Mercher, p. 2. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ativação Transcricional , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Transcriptoma , Repetições de Microssatélites , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
7.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205448

RESUMO

High expression of MYC and its target genes define a subset of germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) associated with poor outcomes. Half of these high-grade cases show chromosomal rearrangements between the MYC locus and heterologous enhancer-bearing loci, while focal deletions of the adjacent non-coding gene PVT1 are enriched in MYC -intact cases. To identify genomic drivers of MYC activation, we used high-throughput CRISPR-interference (CRISPRi) profiling of candidate enhancers in the MYC locus and rearrangement partner loci in GCB-DLBCL cell lines and mantle cell lymphoma (MCL) comparators that lacked common rearrangements between MYC and immunoglobulin (Ig) loci. Rearrangements between MYC and non-Ig loci were associated with unique dependencies on specific enhancer subunits within those partner loci. Notably, fitness dependency on enhancer modules within the BCL6 super-enhancer ( BCL6 -SE) cluster regulated by a transcription factor complex of MEF2B, POU2F2, and POU2AF1 was higher in cell lines bearing a recurrent MYC::BCL6 -SE rearrangement. In contrast, GCB-DLBCL cell lines without MYC rearrangement were highly dependent on a previously uncharacterized 3' enhancer within the MYC locus itself (GCBME-1), that is regulated in part by the same triad of factors. GCBME-1 is evolutionarily conserved and active in normal germinal center B cells in humans and mice, suggesting a key role in normal germinal center B cell biology. Finally, we show that the PVT1 promoter limits MYC activation by either native or heterologous enhancers and demonstrate that this limitation is bypassed by 3' rearrangements that remove PVT1 from its position in cis with the rearranged MYC gene. Key points: CRISPR-interference screens identify a conserved germinal center B cell MYC enhancer that is essential for GCB-DLBCL lacking MYC rearrangements. Functional profiling of MYC partner loci reveals principles of MYC enhancer-hijacking activation by non-immunoglobulin rearrangements.

8.
Emerg Top Life Sci ; 4(3): 281-291, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32338276

RESUMO

Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.


Assuntos
RNA Polimerase II , Transcrição Gênica , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
9.
Front Physiol ; 11: 590180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101065

RESUMO

TFII-I is a ubiquitously expressed transcription factor that positively or negatively regulates gene expression. TFII-I has been implicated in neuronal and immunologic diseases as well as in thymic epithelial cancer. Williams-Beuren Syndrome (WBS) is caused by a large hemizygous deletion on chromosome 7q11.23 which encompasses 26-28 genes, including GTF2I, the human gene encoding TFII-I. A subset of WBS patients has recently been shown to present with macrocytosis, a mild anemia characterized by enlarged erythrocytes. We conditionally deleted the TFII-I/Gtf2i gene in adult mice by tamoxifen induced Cre-recombination. Bone marrow cells revealed defects in erythro-megakaryopoiesis and an increase in expression of the adult ß-globin gene. The data show that TFII-I acts as a repressor of ß-globin gene transcription and that it is implicated in the differentiation of erythro-megakaryocytic cells.

10.
Mol Ther Methods Clin Dev ; 12: 102-110, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30603654

RESUMO

Hemoglobinopathies, including sickle cell disease and thalassemia, are among the most common inherited genetic diseases worldwide. Due to the relative ease of isolating and genetically modifying hematopoietic stem and progenitor cells, recent gene editing and gene therapy strategies have progressed to clinical trials with promising outcomes; however, challenges remain and necessitate the continued exploration of new gene engineering and cell transplantation protocols. Current gene engineering strategies aim at reactivating the expression of the fetal γ-globin genes in adult erythroid cells. The γ-globin proteins exhibit anti-sickling properties and can functionally replace adult ß-globin. Here, we describe and compare the current genetic engineering procedures that may develop into safe and efficient therapies for hemoglobinopathies in the near future.

11.
Leukemia ; 33(4): 931-944, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30291336

RESUMO

Chemoresistance may be due to the survival of leukemia stem cells (LSCs) that are quiescent and not responsive to chemotherapy or lie on the intrinsic or acquired resistance of the specific pool of AML cells. Here, we found, among well-established LSC markers, only CD123 and CD47 are correlated with AML cell chemosensitivities across cell lines and patient samples. Further study reveals that percentages of CD123+CD47+ cells significantly increased in chemoresistant lines compared to parental cell lines. However, stemness signature genes are not significantly increased in resistant cells. Instead, gene changes are enriched in cell cycle and cell survival pathways. This suggests CD123 may serve as a biomarker for chemoresistance, but not stemness of AML cells. We further investigated the role of epigenetic factors in regulating the survival of chemoresistant leukemia cells. Epigenetic drugs, especially histone deacetylase inhibitors (HDACis), effectively induced apoptosis of chemoresistant cells. Furthermore, HDACi Romidepsin largely reversed gene expression profile of resistant cells and efficiently targeted and removed chemoresistant leukemia blasts in xenograft AML mouse model. More interestingly, Romidepsin preferentially targets CD123+ cells, while chemotherapy drug Ara-C mainly targeted fast-growing, CD123- cells. Therefore, Romidepsin alone or in combination with Ara-C may be a potential treatment strategy for chemoresistant patients.


Assuntos
Antígeno CD47/antagonistas & inibidores , Depsipeptídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Subunidade alfa de Receptor de Interleucina-3/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cell Biol ; 38(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012865

RESUMO

The organization of the five ß-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5' end, followed by the two fetal γ-globin genes, and with the adult ß- and δ-globin genes being located at the 3' end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). This site is occupied by transcription factors USF1, USF2, EGR1, MafK, and NF-E2 in the human erythroleukemia cell line K562 and exhibits histone modifications typical for enhancers. We generated a synthetic zinc finger (ZF) DNA-binding domain targeting the HBG-4kb HS (HBG-4kb ZF). The HBG-4kb ZF interacted with the target site in vitro and in the context of cells with a high affinity and specificity. Direct delivery of the HBG-4kb ZF to K562 and primary human erythroid cells caused a reduction in γ-globin gene expression which was associated with decreased binding of transcription factors and active histone marks at and downstream of the HS. The data demonstrate that the HBG-4kb HS is important for fetal globin production and suggest that it may act by opening chromatin in a directional manner.


Assuntos
Cromatina/genética , gama-Globinas/genética , Desoxirribonuclease I , Elementos Facilitadores Genéticos , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Troca , Código das Histonas/genética , Humanos , Células K562 , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/metabolismo , gama-Globinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA