Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nucleic Acids Res ; 52(6): 3137-3145, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324466

RESUMO

Custom oligonucleotides (oligos) are widely used reagents in biomedical research. Some common applications of oligos include polymerase chain reaction (PCR), sequencing, hybridization, microarray, and library construction. The reliability of oligos in such applications depends on their purity and specificity. Here, we report that commercially available oligos are frequently contaminated with nonspecific sequences (i.e. other unrelated oligonucleotides). Most of the oligos that we designed to amplify clustered regularly interspersed palindromic repeats (CRISPR) guide sequences contained nonspecific CRISPR guides. These contaminants were detected in research-grade oligos procured from eight commercial oligo-suppliers located in three different geographic regions of the world. Deep sequencing of some of the oligos revealed a variety of contaminants. Given the wide range of applications of oligos, the impact of oligo cross-contamination varies greatly depending on the field and the experimental method. Incorporating appropriate control experiments in research design can help ensure that the quality of oligo reagents meets the intended purpose. This can also minimize risk depending on the purposes for which the oligos are used.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Contaminação de Medicamentos , Indicadores e Reagentes , Oligonucleotídeos , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Oligonucleotídeos/química , Oligonucleotídeos/normas , Técnicas Genéticas , Indicadores e Reagentes/análise , Indicadores e Reagentes/normas , Indústrias/normas
2.
BMC Genomics ; 25(1): 568, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840068

RESUMO

BACKGROUND: Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS: To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS: Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.


Assuntos
Genoma , Integrases , Camundongos Transgênicos , Animais , Camundongos , Integrases/genética , Integrases/metabolismo , Transgenes , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mutagênese Insercional
3.
Nature ; 559(7714): 405-409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995861

RESUMO

Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.


Assuntos
Reprogramação Celular/genética , Edição de Genes , Genoma Humano/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Autoimunidade/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Masculino , Camundongos , Transplante de Neoplasias , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia
4.
Mol Ther ; 31(9): 2796-2810, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244253

RESUMO

Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10. For these patients, cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knockin mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-hTMPRSS3 injection in the adult knockin mouse inner ear results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-hTMPRSS3 injection in Tmprss3A306T/A306T mice of an average age of 18.5 months leads to sustained rescue of the auditory function to a level similar to wild-type mice. AAV2-hTMPRSS3 delivery rescues the hair cells and the spiral ganglions neurons. This study demonstrates successful gene therapy in an aged mouse model of human genetic deafness. It lays the foundation to develop AAV2-hTMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.


Assuntos
Surdez , Serina Endopeptidases , Adulto , Humanos , Camundongos , Animais , Lactente , Serina Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Audição , Surdez/genética , Surdez/terapia , Terapia Genética , Proteínas de Neoplasias/genética
5.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
6.
Hum Mol Genet ; 30(11): 985-995, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33791800

RESUMO

P2RX2 encodes the P2X2 receptor, which is an adenosine triphosphate (ATP) gated (purinoreceptor) ion channel. P2RX2 c. 178G > T (p.V60L) mutation was previously identified in two unrelated Chinese families, as the cause of human DFNA41, a form of dominant, early-onset and progressive sensorineural hearing loss. We generated and characterized a knock-in mouse model based on human p.V60L mutation that recapitulates the human phenotype. Heterozygous KI mice started to exhibit hearing loss at 21-day-old and progressed to deafness by 6-month-old. Vestibular dysfunction was also observed in mutant mice. Abnormal morphology of the inner hair cells and ribbon synapses was progressively observed in KI animals suggesting that P2rx2 plays a role in the membrane spatial location of the ribbon synapses. These results suggest that P2rx2 is essential for acoustic information transfer, which can be the molecular mechanism related to hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Receptores Purinérgicos P2X2/genética , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/patologia , Heterozigoto , Humanos , Camundongos , Mutação/genética , Linhagem , Fenótipo , Sinapses/genética , Sinapses/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
7.
Development ; 147(13)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541002

RESUMO

Pan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We have previously identified Slc26a9 as an otic placode-specific target of the FGFR2b ligands FGF3 and FGF10. We show here that Slc26a9 is otic specific through E10.5, but is not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5 to P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.


Assuntos
Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Antiporters/genética , Antiporters/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
8.
Nat Mater ; 20(5): 593-605, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33589798

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Anticorpos Antivirais/sangue , Antígenos Virais/análise , Encéfalo/diagnóstico por imagem , COVID-19/diagnóstico por imagem , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/métodos , Teste Sorológico para COVID-19/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pulmão/diagnóstico por imagem , Metagenômica/métodos , Nanoestruturas , Nanotecnologia , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Carga Viral , Eliminação de Partículas Virais
9.
Cell Mol Life Sci ; 78(11): 4849-4865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33821293

RESUMO

Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.


Assuntos
Vesículas Extracelulares/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Animais , Biomarcadores/metabolismo , Comunicação Celular , Citocromo P-450 CYP2E1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/transplante , Humanos , MicroRNAs/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/terapia
10.
Genome Res ; 28(2): 223-230, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273627

RESUMO

CRISPR/Cas9, which generates DNA double-strand breaks (DSBs) at target loci, is a powerful tool for editing genomes when codelivered with a donor DNA template. However, DSBs, which are the most deleterious type of DNA damage, often result in unintended nucleotide insertions/deletions (indels) via mutagenic nonhomologous end joining. We developed a strategy for precise gene editing that does not generate DSBs. We show that a combination of single nicks in the target gene and donor plasmid (SNGD) using Cas9D10A nickase promotes efficient nucleotide substitution by gene editing. Nicking the target gene alone did not facilitate efficient gene editing. However, an additional nick in the donor plasmid backbone markedly improved the gene-editing efficiency. SNGD-mediated gene editing led to a markedly lower indel frequency than that by the DSB-mediated approach. We also show that SNGD promotes gene editing at endogenous loci in human cells. Mechanistically, SNGD-mediated gene editing requires long-sequence homology between the target gene and repair template, but does not require CtIP, RAD51, or RAD52. Thus, it is considered that noncanonical homology-directed repair regulates the SNGD-mediated gene editing. In summary, SNGD promotes precise and efficient gene editing and may be a promising strategy for the development of a novel gene therapy approach.


Assuntos
Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Genoma Humano/genética , Reparo de DNA por Recombinação/genética , Proteínas de Transporte/genética , Reparo do DNA por Junção de Extremidades/genética , Desoxirribonuclease I/genética , Endodesoxirribonucleases , Edição de Genes , Engenharia Genética/métodos , Humanos , Mutação INDEL/genética , Mutagênese/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética
11.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798897

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Assuntos
Doença de Alzheimer/patologia , Linfócitos T CD4-Positivos/patologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Transtornos Cognitivos/patologia , Transtornos Cognitivos/psicologia , Inflamação/genética , Camundongos , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
12.
BMC Immunol ; 20(1): 2, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616506

RESUMO

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγc-/- (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. CONCLUSION: NSG-cmah-/- mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Loci Gênicos , Infecções por HIV/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
13.
Toxicol Pathol ; 47(8): 1082-1087, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31522606

RESUMO

Toxicologic pathology is one of the most valuable fields contributing to the advancement of animal and human health. With the ever-changing technological and economic environment, the basic skill set that pathologists are equipped with may require refinement to address the current and future needs. Periodically, pathologists must add relevant, new skills to their toolbox. The Career Development and Outreach Committee of the Society of Toxicologic Pathology (STP) sponsored a career development workshop entitled "Looking Forward: Cutting-edge Technologies and Skills for Pathologists in the Future" in conjunction with the STP 38th Annual Symposium. Experts were chosen to speak on artificial intelligence, clustered regularly interspaced short palindromic repeats technology, microRNAs, and next-generation sequencing. This article provides a summary of the talks presented at the workshop.


Assuntos
Pesquisa Biomédica , Patologia/tendências , Toxicologia/tendências , Animais , Inteligência Artificial , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Congressos como Assunto , Engenharia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Patologistas , Patologia/métodos , Toxicologia/métodos
14.
J Pharmacol Exp Ther ; 365(2): 272-280, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476044

RESUMO

Antiretroviral drug (ARV) metabolism is linked largely to hepatic cytochrome P450 activity. One ARV drug class known to be metabolized by intestinal and hepatic CYP3A are the protease inhibitors (PIs). Plasma drug concentrations are boosted by CYP3A inhibitors such as cobisistat and ritonavir (RTV). Studies of such drug-drug interactions are limited since the enzyme pathways are human specific. While immune-deficient mice reconstituted with human cells are an excellent model to study ARVs during human immunodeficiency virus type 1 (HIV-1) infection, they cannot reflect human drug metabolism. Thus, we created a mouse strain with the human pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 genes on a NOD.Cg-Prkdcscid Il2rgtm1Sug /JicTac background (hCYP3A-NOG) and used them to evaluate the impact of human CYP3A metabolism on ARV pharmacokinetics. In proof-of-concept studies we used nanoformulated atazanavir (nanoATV) with or without RTV. NOG and hCYP3A-NOG mice were treated weekly with 50 mg/kg nanoATV alone or boosted with nanoformulated ritonavir (nanoATV/r). Plasma was collected weekly and liver was collected at 28 days post-treatment. Plasma and liver atazanavir (ATV) concentrations in nanoATV/r-treated hCYP3A-NOG mice were 2- to 4-fold higher than in replicate NOG mice. RTV enhanced plasma and liver ATV concentrations 3-fold in hCYP3A-NOG mice and 1.7-fold in NOG mice. The results indicate that human CYP3A-mediated drug metabolism is reduced compared with mouse and that RTV differentially affects human gene activity. These differences can affect responses to PIs in humanized mouse models of HIV-1 infection. Importantly, hCYP3A-NOG mice reconstituted with human immune cells can be used for bench-to-bedside translation.


Assuntos
Fármacos Anti-HIV/farmacologia , Citocromo P-450 CYP3A/genética , Receptor de Pregnano X/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Fármacos Anti-HIV/farmacocinética , Receptor Constitutivo de Androstano , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Distribuição Tecidual , Pesquisa Translacional Biomédica
15.
Methods ; 121-122: 16-28, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28351759

RESUMO

Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/genética , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Eletroporação , Endonucleases/metabolismo , Marcação de Genes/métodos , Genoma , Células HEK293 , Humanos , Células Jurkat , Lipídeos/química , Camundongos , Microinjeções , RNA Guia de Cinetoplastídeos/síntese química , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Ribonucleoproteínas/metabolismo , Zigoto/citologia , Zigoto/metabolismo
16.
J Biol Chem ; 291(22): 11843-51, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27053107

RESUMO

The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis.


Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 8/metabolismo , Neoplasias do Colo/patologia , Membranas Mitocondriais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Sequência de Bases , Western Blotting , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Homologia de Sequência do Ácido Nucleico , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
17.
Hum Genet ; 135(9): 971-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27384229

RESUMO

Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples.


Assuntos
Pesquisa Biomédica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genética Médica , Genética Reversa , Humanos
18.
J Cell Physiol ; 230(6): 1212-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25358290

RESUMO

The periderm is a flat layer of epithelium created during embryonic development. During palatogenesis, the periderm forms a protective layer against premature adhesion of the oral epithelia, including the palate. However, the periderm must be removed in order for the medial edge epithelia (MEE) to properly adhere and form a palatal seam. Improper periderm removal results in a cleft palate. Although the timing of transforming growth factor ß3 (TGFß3) expression in the MEE coincides with periderm degeneration, its role in periderm desquamation is not known. Interestingly, murine models of knockout (-/-) TGFß3, interferon regulatory factor 6 (IRF6) (-/-), and truncated p63 (ΔNp63) (-/-) are born with palatal clefts because of failure of the palatal shelves to adhere, suggesting that these genes regulate palatal epithelial differentiation. However, despite having similar phenotypes in null mouse models, no studies have analyzed the possible association between the TGFß3 signaling cascade and the IRF6/ΔNp63 genes during palate development. Recent studies indicate that regulation of ΔNp63, which depends on IRF6, facilitates epithelial differentiation. We performed biochemical analysis, gene activity and protein expression assays with palatal sections of TGFß3 (-/-), ΔNp63 (-/-), and wild-type (WT) embryos, and primary MEE cells from WT palates to analyze the association between TGFß3 and IRF6/ΔNp63. Our results suggest that periderm degeneration depends on functional TGFß3 signaling to repress ΔNp63, thereby coordinating periderm desquamation. Cleft palate occurs in TGFß3 (-/-) because of inadequate periderm removal that impedes palatal seam formation, while cleft palate occurs in ΔNp63 (-/-) palates because of premature fusion.


Assuntos
Células Epiteliais/metabolismo , Palato/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Epitélio/metabolismo , Epitélio/patologia , Fatores Reguladores de Interferon/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Palato/embriologia , Fosfoproteínas/deficiência , Transdução de Sinais/fisiologia , Transativadores/deficiência
19.
BMC Genomics ; 16: 274, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25887549

RESUMO

BACKGROUND: The pronuclear injection (PI) is the simplest and widely used method to generate transgenic (Tg) mice. Unfortunately, PI-based Tg mice show uncertain transgene expression due to random transgene insertion in the genome, usually with multiple copies. Thus, typically at least three or more Tg lines are produced by injecting over 200 zygotes and the best line/s among them are selected through laborious screening steps. Recently, we developed technologies using Cre-loxP system that allow targeted insertion of single-copy transgene into a predetermined locus through PI. We termed the method as PI-based Targeted Transgenesis (PITT). A similar method using PhiC31-attP/B system was reported subsequently. RESULTS: Here, we developed an improved-PITT (i-PITT) method by combining Cre-loxP, PhiC31-attP/B and FLP-FRT systems directly under C57BL/6N inbred strain, unlike the mixed strain used in previous reports. The targeted Tg efficiency in the i-PITT typically ranged from 10 to 30%, with 47 and 62% in two of the sessions, which is by-far the best Tg rate reported. Furthermore, the system could generate multiple Tg mice simultaneously. We demonstrate that injection of up to three different Tg cassettes in a single injection session into as less as 181 zygotes resulted in production of all three separate Tg DNA containing targeted Tg mice. CONCLUSIONS: The i-PITT system offers several advantages compared to previous methods: multiplexing capability (i-PITT is the only targeted-transgenic method that is proven to generate multiple different transgenic lines simultaneously), very high efficiency of targeted-transgenesis (up to 62%), significantly reduces animal numbers in mouse-transgenesis and the system is developed under C57BL/6N strain, the most commonly used pure genetic background. Further, the i-PITT system is freely accessible to scientific community.


Assuntos
Marcação de Genes , Técnicas de Transferência de Genes , Animais , Células-Tronco Embrionárias , Feminino , Injeções/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37425946

RESUMO

Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA