Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 172, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689238

RESUMO

BACKGROUND: Protein-protein interactions (PPIs) are conveyed through binding interfaces or surface patches on proteins that become buried upon binding. Structural and biophysical analysis of many protein-protein interfaces revealed certain unique features of these surfaces that determine the energetics of interactions and play a critical role in protein evolution. One of the significant aspects of binding interfaces is the presence of binding hot spots, where mutations are highly deleterious for binding. Conversely, binding cold spots are positions occupied by suboptimal amino acids and several mutations in such positions could lead to affinity enhancement. While there are many software programs for identification of hot spot positions, there is currently a lack of software for cold spot detection. RESULTS: In this paper, we present Cold Spot SCANNER, a Colab Notebook, which scans a PPI binding interface and identifies cold spots resulting from cavities, unfavorable charge-charge, and unfavorable charge-hydrophobic interactions. The software offers a Py3DMOL-based interface that allows users to visualize cold spots in the context of the protein structure and generates a zip file containing the results for easy download. CONCLUSIONS: Cold spot identification is of great importance to protein engineering studies and provides a useful insight into protein evolution. Cold Spot SCANNER is open to all users without login requirements and can be accessible at: https://colab. RESEARCH: google.com/github/sagagugit/Cold-Spot-Scanner/blob/main/Cold_Spot_Scanner.ipynb .


Assuntos
Proteínas , Software , Proteínas/química , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Ligação Proteica , Conformação Proteica , Modelos Moleculares , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas
2.
bioRxiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38979193

RESUMO

Protein-protein interactions (PPIs) govern virtually all cellular processes. Even a single mutation within PPI can significantly influence overall protein functionality and potentially lead to various types of diseases. To date, numerous approaches have emerged for predicting the change in free energy of binding (ΔΔGbind) resulting from mutations, yet the majority of these methods lack precision. In recent years, protein language models (PLMs) have been developed and shown powerful predictive capabilities by leveraging both sequence and structural data from protein-protein complexes. Yet, PLMs have not been optimized specifically for predicting ΔΔGbind. We developed an approach to predict effects of mutations on PPI binding affinity based on two most advanced protein language models ESM2 and ESM-IF1 that incorporate PPI sequence and structural features, respectively. We used the two models to generate embeddings for each PPI mutant and subsequently fine-tuned our model by training on a large dataset of experimental ΔΔGbind values. Our model, ProBASS (Protein Binding Affinity from Structure and Sequence) achieved a correlation with experimental ΔΔGbind values of 0.83 ± 0.05 for single mutations and 0.69 ± 0.04 for double mutations when model training and testing was done on the same PDB. Moreover, ProBASS exhibited very high correlation (0.81 ± 0.02) between prediction and experiment when training and testing was performed on a dataset containing 2325 single mutations in 132 PPIs. ProBASS surpasses the state-of-the-art methods in correlation with experimental data and could be further trained as more experimental data becomes available. Our results demonstrate that the integration of extensive datasets containing ΔΔGbind values across multiple PPIs to refine the pre-trained PLMs represents a successful approach for achieving a precise and broadly applicable model for ΔΔGbind prediction, greatly facilitating future protein engineering and design studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA