Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(12): e1009024, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33270801

RESUMO

Despite the efficacy of antiretroviral-based pre-exposure prophylactics (PrEP) in men who have sex with men, studies in women have produced widely varying outcomes. Recent evidence demonstrates that vaginal microbial communities are associated with increased HIV acquisition risk and may impact PrEP efficacy. Here, we investigate the mechanisms underlying how vaginal bacteria alter PrEP drug levels and impact HIV infection rates ex vivo. Using cervicovaginal lavages (CVLs) from women with or without bacterial vaginosis (BV), we identified microbial metabolism of PrEP drugs in BV samples through LC-MS/MS analysis of soluble drug levels and metabolite formation in dual T-cell cultures. CVL samples were assessed for microbiome analysis using sequencing of bacterial 16S rRNA genes. We also observed non-Lactobacillus bacteria that are associated with BV may potentially impact PrEP efficacy through increased HIV infection rates in co-cultures containing Lactobacillus or BV bacteria, PrEP drugs, CEM-GFP cells, and HIV-1LAI virus. Finally, we used these data to develop a novel predictive mathematical simulation modeling system to predict these drug interactions for future trials. These studies demonstrate how dysbiotic vaginal microbiota may impact PrEP drugs and provides evidence linking vaginal bacteria to PrEP efficacy in women.


Assuntos
Infecções por HIV/transmissão , Microbiota/fisiologia , Profilaxia Pré-Exposição/métodos , Vagina/microbiologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico , Cromatografia Líquida/métodos , Disbiose/microbiologia , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem/métodos , Resultado do Tratamento , Vagina/efeitos dos fármacos , Vaginose Bacteriana/complicações , Vaginose Bacteriana/tratamento farmacológico
2.
Am J Obstet Gynecol ; 226(2): 225.e1-225.e15, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34560047

RESUMO

BACKGROUND: Bacterial vaginosis-a condition defined by a shift from Lactobacillus dominance to a polymicrobial, anaerobic bacterial community-increases the risk of acquiring sexually transmitted infections and other complications of the female reproductive tract. Antibiotic treatment frequently fails to return the microbiome to an optimal Lactobacillus-dominated state. No criteria currently exist to identify the patients likely to experience treatment failure. OBJECTIVE: We sought to identify the pretreatment community signatures associated with treatment failure through 16S ribosomal RNA gene analysis. STUDY DESIGN: Twenty-eight women who were enrolled in an oral metronidazole treatment trial of bacterial vaginosis were studied. Cervicovaginal lavage samples were collected before metronidazole treatment and at 7 and 30 days posttreatment. Cervicovaginal lavage DNA was amplified and sequenced using a paired-end, V4 region 2×150 MiSeq run. RESULTS: Of the 28 women, 25% failed to clear bacterial vaginosis; 35.7% demonstrated a transient clearance, shifting to community-type 2 (Lactobacillus iners dominant) at visit 2 only; 7.1% demonstrated a delayed clearance, reaching community-type 2 at the final visit only; and 32.1% of patients experienced sustained bacterial vaginosis clearance. Examination of the community composition and structure demonstrated that both the richness and the evenness were significantly lower for the women who experienced sustained clearance, whereas the women who failed to clear bacterial vaginosis possessed the highest median levels of richness, evenness, and diversity pretreatment. Soluble immune factors in the lower reproductive tract improved significantly following a shift from community-type 4 to a Lactobacillus-dominant microbiome, with the samples categorized as community-type 2 possessing significantly higher levels of secretory leukocyte protease inhibitor, growth-regulated alpha protein, and macrophage inflammatory protein-3 and significantly lower levels of intercellular adhesion molecule-1. Although the shifts to Lactobacillus dominance improved the markers of mucosal tissue health, these gains were only temporary among the women who experienced recurrence. CONCLUSION: Assemblies of highly diverse microbiota are associated with the enhanced resilience of bacterial vaginosis to standard metronidazole treatment. These communities may be foundational to treatment resistance or simply an indication of a well-established community made possible by canonical biofilm-forming taxa. Future studies must target the transcriptional activity of these communities under the pressure of antibiotic treatment to resolve the mechanisms of their resistance.


Assuntos
Antibacterianos/uso terapêutico , Metronidazol/uso terapêutico , Vagina/microbiologia , Vaginose Bacteriana/tratamento farmacológico , Adulto , Feminino , Humanos , Lactobacillus , Estudos Longitudinais , Microbiota , Recidiva , Falha de Tratamento , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia
3.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659794

RESUMO

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

4.
Res Sq ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36415465

RESUMO

We present a comprehensive analysis of SARS-CoV-2 infection and recovery in wild type C57BL/6 mice, demonstrating that this is an ideal model of infection and recovery that accurately phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice accurately phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.

5.
Vaccines (Basel) ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36679892

RESUMO

We present a comprehensive analysis of SARS-CoV-2 infection and recovery using wild type C57BL/6 mice and a mouse-adapted virus, and we demonstrate that this is an ideal model of infection and recovery that phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.

6.
Front Immunol ; 12: 793842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082782

RESUMO

Liver disease is a significant contributor to morbidity and mortality in HIV-infected individuals, even during successful viral suppression with combination antiretroviral therapy (cART). Similar to HIV infection, SIV infection of rhesus macaques is associated with gut microbiome dysbiosis and microbial translocation that can be detected systemically in the blood. As microbes leaving the intestines must first pass through the liver via the portal vein, we evaluated the livers of both SIV-infected (SIV+) and SIV-infected cART treated (SIV+cART) rhesus macaques for evidence of microbial changes compared to uninfected macaques. Dysbiosis was observed in both the SIV+ and SIV+cART macaques, encompassing changes in the relative abundance of several genera, including a reduction in the levels of Lactobacillus and Staphylococcus. Most strikingly, we found an increase in the relative abundance and absolute quantity of bacteria within the Mycobacterium genus in both SIV+ and SIV+cART macaques. Multi-gene sequencing identified a species of atypical mycobacteria similar to the opportunistic pathogen M. smegmatis. Phosphatidyl inositol lipoarabinomannan (PILAM) (a glycolipid cell wall component found in atypical mycobacteria) stimulation in primary human hepatocytes resulted in an upregulation of inflammatory transcriptional responses, including an increase in the chemokines associated with neutrophil recruitment (CXCL1, CXCL5, and CXCL6). These studies provide key insights into SIV associated changes in hepatic microbial composition and indicate a link between microbial components and immune cell recruitment in SIV+ and SIV+cART treated macaques.


Assuntos
Coinfecção , Disbiose , Fígado/microbiologia , Infecções por Mycobacterium não Tuberculosas , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Antirretrovirais , Coinfecção/imunologia , Coinfecção/microbiologia , Disbiose/imunologia , Disbiose/microbiologia , Humanos , Macaca mulatta , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Vírus da Imunodeficiência Símia
7.
NPJ Vaccines ; 6(1): 34, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707443

RESUMO

An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.

8.
Nat Commun ; 11(1): 6147, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262350

RESUMO

Bacterial vaginosis is a condition associated with adverse reproductive outcomes and characterized by a shift from a Lactobacillus-dominant vaginal microbiota to a polymicrobial microbiota, consistently colonized by strains of Gardnerella vaginalis. Metronidazole is the first-line treatment; however, treatment failure and recurrence rates remain high. To understand complex interactions between Gardnerella vaginalis and Lactobacillus involved in efficacy, here we develop an ordinary differential equation model that predicts bacterial growth as a function of metronidazole uptake, sensitivity, and metabolism. The model shows that a critical factor in efficacy is Lactobacillus sequestration of metronidazole, and efficacy decreases when the relative abundance of Lactobacillus is higher pre-treatment. We validate results in Gardnerella and Lactobacillus co-cultures, and in two clinical cohorts, finding women with recurrence have significantly higher pre-treatment levels of Lactobacillus relative to bacterial vaginosis-associated bacteria. Overall results provide mechanistic insight into how personalized differences in microbial communities influence vaginal antibiotic efficacy.


Assuntos
Antibacterianos/administração & dosagem , Metronidazol/administração & dosagem , Microbiota , Vaginose Bacteriana/tratamento farmacológico , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Estudos de Coortes , Feminino , Gardnerella vaginalis/efeitos dos fármacos , Gardnerella vaginalis/genética , Gardnerella vaginalis/crescimento & desenvolvimento , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Resultado do Tratamento , Vagina/efeitos dos fármacos , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
10.
Mucosal Immunol ; 13(3): 471-480, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797911

RESUMO

The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in the stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities associated with specific alterations in mucosal and systemic immunity.


Assuntos
Antibacterianos/farmacologia , Colo , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Bactérias , Biodiversidade , Biomarcadores , Esquema de Medicação , Monitoramento de Medicamentos , Ácidos Graxos Voláteis/metabolismo , Fezes/citologia , Fezes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Imunofenotipagem , Mucosa Intestinal/patologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA