Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 160(Pt 1): 209-216, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140647

RESUMO

Clostridium difficile is the most common cause of enteric disease and presents a major burden on healthcare systems globally due in part to the observed rapid rise in antibiotic resistance. The ability of C. difficile to form endospores is a key feature in the organism's pathogenesis and transmission, and contributes greatly to its resilient nature. Endospores are highly resistant to disinfection, allowing them to persist on hospital surfaces. In order for the organism to cause disease, the spores must germinate and revert to a vegetative form. While spore germination in Bacillus spp. is well understood, very little is known about this process in Clostridia. Here we report the characterization of SleC (CD0551) from C. difficile 630. Bioinformatic analysis of SleC indicated a multi-domained protein possessing a peptidoglycan-binding (PGB) domain, a SpoIID/LytB domain and an undefined N-terminal region. We have confirmed that SleC is an exo-acting lytic transglycosylase with the catalytic activity localized to the N-terminal region. Additionally, we have shown that both the N-terminal catalytic domain and the C-terminal PGB domain require muramyl-δ-lactam for substrate binding. As with carbohydrate-binding modules from cellulases and xylanases, the PGB domain may be responsible for increasing the processivity of SleC by concentrating the enzyme at the surface of the substrate.


Assuntos
Clostridioides difficile/enzimologia , Clostridioides difficile/crescimento & desenvolvimento , Peptidoglicano Glicosiltransferase/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Domínio Catalítico , Clostridioides difficile/genética , Biologia Computacional , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/genética , Ligação Proteica , Estrutura Terciária de Proteína
2.
J Virol ; 85(24): 13278-89, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994450

RESUMO

The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves as the messenger for both core and P proteins, with the downstream P gene translated by ribosomal leaky scanning. HBV replication begins with packaging of the pgRNA and P protein into core protein particles, followed by conversion of RNA into DNA. Genotype G has a low replication capacity due to a low pgRNA level. It has a 36-nucleotide (nt) insertion in the 5' end of the core gene, adding 12 residues to the core protein. The insertion is needed to maintain efficient core protein expression and genome replication but causes inefficient virion secretion yet high maturity of virion DNA. In the present study, we confirmed that the 36-nt insertion had similar effects on core protein expression and virion secretion when it was introduced into genotype A and D clones but no impact on virion genome maturity. Surprisingly, the insertion impaired genome replication in both genotypes. Transcomplementation assays suggest that increased efficiency of core protein translation diminishes ribosomal scanning toward the downstream P gene. Indeed, mutating the core gene Kozak sequence restored core protein to lower levels but increased replication of the insertion mutant. Similar mutations impaired replication in genotype G. On the other hand, replacement of the core promoter sequence of genotype G with genotype A sequence increased pgRNA transcription and genome replication, implicating this region in the low replication capacity of genotype G. Why the 36-nt insertion is present in genotype G but absent in other genotypes is discussed.


Assuntos
Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Mutagênese Insercional , Liberação de Vírus , Genótipo , Vírus da Hepatite B/classificação , Replicação Viral
3.
J Clin Microbiol ; 49(4): 1226-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289153

RESUMO

Different hepatitis B virus (HBV) genotypes and variants are associated with different clinical outcomes and/or response to antiviral therapy, yet the comparison of the in vitro replication capacity of a large number of clinical isolates remains technically challenging and time-consuming. Although the full-length HBV genome can be amplified from high-titer blood samples by PCR using High Fidelity(plus) DNA polymerase and primers targeting the conserved precore region, the HBV clones thus generated are replication deficient due to the inability to generate the terminally redundant pregenomic RNA essential for genome replication. The transfection experiment is further complicated by PCR errors and the presence of viral quasispecies. A previous study found that the precise removal of non-HBV sequence by SapI digestion led to HBV replication in transfected cells, possibly due to low-level genome circularization by a cellular enzyme. We released HBV genome from the cloning vector using BspQI, an inexpensive isoschizomer of SapI, and increased the efficiency of genome replication by an extra step of in vitro DNA ligation. The uncut plasmid DNA can be used for transfection if the sole purpose is to study envelope protein expression. We found significant PCR errors associated with the High Fidelity(plus) DNA polymerase, which could be greatly diminished using Phusion DNA polymerase or masked by the use of a clone pool. The reduced PCR error and modified enzymatic steps prior to transfection should facilitate a more widespread functional characterization of clinical HBV isolates, while the clone pool approach is useful for samples with significant sequence heterogeneity.


Assuntos
Genoma Viral , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Hepatite B/virologia , Proteínas Virais/biossíntese , Replicação Viral , Clonagem Molecular , Expressão Gênica , Vetores Genéticos , Vírus da Hepatite B/isolamento & purificação , Humanos , Proteínas Virais/genética , Cultura de Vírus
4.
Medchemcomm ; 5(8): 1213-1217, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25431647

RESUMO

N-acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan. Inhibitors of bacterial GlcNAcases can serve as antibacterial agents and provide an opportunity for the development of new antibiotics. We report the synthesis of triazole derivatives of N-acetylglucosamine using a copper promoted azide-alkyne coupling reaction between 1-azido-N-acetylglucosamine and a small library of terminal alkynes prepared via the Ugi reaction. These compounds were evaluated for their ability to inhibit the growth of bacteria. Two compounds that show bacteriostatic activity against Bacillus were identified, with MIC values of approximately 60 µM in both cases. Bacillus subtilis cultured in the presence of sub-MIC amounts of the glycosyl triazole inhibitors exhibit an elongated phenotype characteristic of impaired cell division. This represents the first report of inhibitors of bacterial cell wall GlcNAcases that demonstrate inhibition of cell growth in whole cell assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA