Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 524: 31-44, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27530652

RESUMO

Here, we report the simultaneous derivatization and quantification of malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) in human plasma by GC-MS/MS using [1,3-2H2]-MDA (d2-MDA) and [9,9,9-2H3]-HNE (d3-HNE) as the internal standards, respectively. MDA, d2-MDA, HNE and d3-HNE were converted to their pentafluorobenzyl oximes (PFBOX) by pentafluorobenzyl hydroxylamine. Subsequently, the hydroxyl groups of the PFBOX of HNE and d3-HNE were trimethylsilylated with N,O-bis(trimethylsilyl)trifluoroacetamide/1% trimethylchlorosilane. GC-MS/MS analyses were performed in the electron-capture negative-ion chemical ionization mode. Quantification was performed by selected-reaction monitoring the mass transitions m/z 442 to m/z 243 for MDA, m/z 444 to m/z 244 for d2-MDA, m/z 403 → m/z 283 for HNE and m/z 406 → m/z 286 for d3-HNE. The method was applied to measure MDA and HNE in plasma of patients suffering from coronary artery disease (CAD) or peripheral artery occlusive disease (PAOD) before and after oral supplementation of L-arginine (3 g/day) or placebo for 3 (CAD and PAOD) and 6 months (PAOD). All plasma samples were analyzed after completion of the studies. Our results revealed that storage of plasma samples (at -80 °C) leads to lower MDA and HNE plasma concentrations in the plasma samples that were collected at the end of the studies as compared to those collected at the begin of the studies. Based on MDA and HNE measurements in plasma, L-arginine did not influence lipid peroxidation in CAD and PAOD patients. Long-term studies on lipid peroxidation are best performed by measuring oxidative stress biomarkers such as MDA and/or HNE in plasma samples immediately after their collection. Long-term storage of plasma samples even at -80 °C is not recommended.


Assuntos
Aldeídos/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Malondialdeído/sangue , Estresse Oxidativo , Biomarcadores/sangue , Humanos
2.
Amino Acids ; 46(9): 2205-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923265

RESUMO

L-Homoarginine (hArg) has recently emerged as a novel cardiovascular risk factor and to herald a poor prognosis in heart failure patients. Here, we report on the development and thorough validation of gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) methods for the quantitative determination of hArg in biological samples, including human plasma, urine and sputum. For plasma and serum samples, ultrafiltrate (10 µL; cutoff, 10 kDa) was used. For urine samples, native urine (10 µL) was used. For sputum, protein precipitation by acetone was performed. hArg is derivatized to its methyl ester tri(N-pentafluoropropionyl) derivative; de novo synthesized trideutero-methyl ester hArg is used as the internal standard (IS). Alternatively, [guanidino-(15)N2]-arginine can be used as an IS. Quantitative analyses were performed after electron-capture negative-ion chemical ionization by selected-ion monitoring in GC-MS and selected-reaction monitoring in GC-MS/MS. We obtained very similar hArg concentrations by GC-MS and GC-MS/MS, suggesting that GC-MS suffices for accurate and precise quantification of hArg in biological samples. In plasma and serum samples of the same subjects very close hArg concentrations were measured. The plasma-to-serum hArg concentration ratio was determined to be 1.12 ± 0.21 (RSD, 19 %), suggesting that blood anticoagulation is not a major preanalytical concern in hArg analysis. In healthy subjects, the creatinine-corrected urinary excretion of hArg varies considerably (0.18 ± 0.22 µmol/mmol, mean ± SD, n = 19) unlike asymmetric dimethylarginine (ADMA, 2.89 ± 0.89 µmol/mmol). In urine, hArg correlated with ADMA (r = 0.475, P = 0.040); in average, subjects excreted in the urine about 17.5 times more ADMA than hArg. In plasma of healthy humans, the concentration of hArg is of the order of 2 µM. hArg may be a low-abundance constituent of human plasma proteins. The GC-MS and GC-MS/MS methods we report in this article are useful to study the physiology and pathology of hArg in experimental and clinical settings.


Assuntos
Doenças Cardiovasculares , Cromatografia Gasosa-Espectrometria de Massas/métodos , Homoarginina , Escarro/metabolismo , Arginina/análogos & derivados , Arginina/sangue , Arginina/urina , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/urina , Feminino , Homoarginina/sangue , Homoarginina/urina , Humanos , Masculino , Fatores de Risco
3.
Biochim Biophys Acta ; 1811(11): 706-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875688

RESUMO

The endocannabinoids anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2AG) are physiologically occurring, biologically active compounds on CB(1) and CB(2) receptors with multiple physiological functions. AEA and 2AG have been identified and quantified in many mammalian biological fluids and tissues, such as human plasma, adipocytes, tissues and tissue microdialysates, at concentrations in the picomolar-to-nanomolar range under basal conditions. In this article, recently published chromatographic and mass spectrometric analytical methods, i.e., HPLC with fluorescence or ultraviolet detection, LC-MS, LC-MS/MS, GC-MS and GC-MS/MS, are reviewed and discussed, notably from the quantitative point of view. We focus on and emphasize the particular importance of blood sampling, sample storage and work-up including solvent and solid-phase extraction and derivatization procedures, matrix-effects, and stability of analytes. As 2AG spontaneously isomerizes to its CB(1)/CB(2) receptors biologically inactive 1-arachidonoyl glycerol (1AG) by acyl migration, this phenomenon and its particular importance for accurate quantification of 2AG are discussed in detail. Due to the electrical neutrality of AEA and 2AG their solvent extraction by toluene offers the least matrix-effect and minimum isomerization. LC-MS/MS is the most frequently used analytical technique for AEA and 2AG. At present, the utility of the GC-MS/MS methodology seems to be limited to AEA measurement in human plasma, bronchoalveolar liquid (BAL) and microdialysate samples. Despite great instrumental advances in the LC-MS/MS methodology, sampling and sample treatment remains one of the most crucial analytical steps in 2AG analysis. Extension of the LC-MS/MS methodology, for instance to microdialysate and BAL samples from clinical studies, is a big analytical challenge in endocannabinoid analysis in clinical settings. Currently available LC-MS/MS and GC-MS/MS methods should be useful to investigate the metabolism of AEA and 2AG beyond hydrolysis, i.e., by ß- and ω-oxidation pathways.


Assuntos
Métodos Analíticos de Preparação de Amostras , Moduladores de Receptores de Canabinoides/análise , Endocanabinoides , Espectrometria de Massas/métodos , Moduladores de Receptores de Canabinoides/química , Precipitação Química , Humanos , Microdiálise
4.
Anal Biochem ; 421(2): 770-2, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22206936

RESUMO

We describe a simple laboratory method for specific labeling of nitrite with ¹8O for use in chemical and biochemical studies in the area of nitric oxide research. NaNO2 (0.1 mmol) is diluted in H2¹8O (45 µl) and acidified with HCl (1 µl, 5 M), and the solution is allowed to equilibrate. Subsequently, the sample is mixed by vortexing with ethyl acetate (500 µl), and the organic phase is dried over anhydrous Na2SO(4). Ethyl acetate is evaporated to dryness, and the residue is reconstituted in phosphate-buffered saline. In human blood hemolysate, oxyhemoglobin (HbFe¹6O2) was shown to oxidize N¹8O2⁻ to ¹6ON¹8O2⁻.


Assuntos
Marcação por Isótopo/métodos , Óxido Nítrico/química , Nitritos/química , Isótopos de Oxigênio/química , Oxiemoglobinas/química , Catálise , Humanos , Oxirredução
5.
Anal Biochem ; 430(1): 4-15, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22858756

RESUMO

Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue).


Assuntos
Testes de Química Clínica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Morfolinas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cisteamina/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Masculino , Camundongos , Morfolinas/sangue , Morfolinas/química , Morfolinas/urina , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/normas , Verduras/química
6.
Nitric Oxide ; 26(2): 126-31, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22290016

RESUMO

Nitrite (ONO(-)) exerts nitric oxide (NO)-related biological actions and its concentration in the circulation may be of particular importance. Nitrite is excreted in the urine. Hence, the kidney may play an important role in nitrite/NO homeostasis in the vasculature. We investigated a possible involvement of renal carbonic anhydrases (CAs) in endogenous nitrite reabsorption in the proximal tubule. The potent CA inhibitor acetazolamide was administered orally to six healthy volunteers (5 mg/kg) and nitrite was measured in spot urine samples before and after administration. Acetazolamide increased abruptly nitrite excretion in the urine, strongly suggesting that renal CAs are involved in nitrite reabsorption in healthy humans. Additional in vitro experiments support our hypothesis that nitrite reacts with CO(2), analogous to the reaction of peroxynitrite (ONOO(-)) with CO(2), to form acid-labile nitrito carbonate [ONOC(O)O(-)]. We assume that this reaction is catalyzed by CAs and that nitrito carbonate represents the nitrite form that is actively transported into the kidney. The significance of nitrite reabsorption in the kidney and the underlying mechanisms, notably a direct involvement of CAs in the reaction between nitrite and CO(2), remain to be elucidated.


Assuntos
Anidrases Carbônicas/metabolismo , Túbulos Renais Proximais/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Acetazolamida/farmacologia , Adulto , Dióxido de Carbono , Carbonatos , Inibidores da Anidrase Carbônica/farmacologia , Creatinina/urina , Feminino , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/enzimologia , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Nitratos/urina , Óxido Nítrico/metabolismo , Nitritos/urina , Ácido Peroxinitroso
7.
Analyst ; 137(10): 2480-5, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22454834

RESUMO

Common ethanol detection methods are not applicable to cell culture media and microdialysates due to interference with medium constituents including amino acids and pH indicators. We present a novel GC-MS method for the accurate and precise analysis of ethanol in cell cultures and microdialysates. The method is based on the carbonate-catalyzed extractive pentafluorobenzoylation of ethanol and deuterium-labelled ethanol serving as the internal standard and on their GC-MS analysis in the electron-capture negative-ion chemical ionization mode. The method was used to optimize experimental conditions in a custom-made ethanol vapour system utilized for studies examining ethanol influences on neuronal cell lines and in microdialysis.


Assuntos
Benzoatos/química , Carbonatos/química , Etanol/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Aminoácidos/química , Catálise , Linhagem Celular Tumoral , Deutério/química , Humanos , Concentração de Íons de Hidrogênio , Microdiálise , Técnica de Diluição de Radioisótopos
8.
Anal Biochem ; 413(1): 60-2, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21303648

RESUMO

Previously, we demonstrated the utility of a gas chromatography-tandem mass spectrometry (GC-MS/MS) method for the quantitative determination of asymmetric dimethylarginine (ADMA) in biological samples. Here we report the extension of this method to symmetric dimethylarginine (SDMA) in human urine. SDMA and ADMA were simultaneously quantitated in urine by using their in situ prepared trideuteromethyl esters as internal standards. The GC-MS/MS method was validated for SDMA and ADMA in spot urine samples of 19 healthy adults. In these samples, the creatinine-corrected excretion rate was 3.23±0.63 µmol/mmol for SDMA and 3.14±0.98 µmol/mmol for ADMA.


Assuntos
Arginina/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adulto , Arginina/urina , Humanos , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos
9.
Anal Biochem ; 397(1): 126-8, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19800860

RESUMO

Nitrite and nitrate in body fluids and tissues result from dietary source, endogenous nitric oxide (NO) production and from NO and its higher oxides (NO(x)) present as pollutants in the atmosphere. Nitrite and nitrate in human blood serum and plasma or urine are commonly used as biomarkers and measures of endogenous NO synthesis. In addition to dietary intake of nitrite and nitrate, our study indicates that NO(x) naturally present in the laboratory air may be an abundant source for nitrite and nitrate in human serum, plasma, and urine ex vivo. These artifacts can be effectively reduced by closing sample-containing vials during sample treatment.


Assuntos
Ar , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitratos/análise , Óxido Nítrico/metabolismo , Nitritos/análise , Análise Química do Sangue , Humanos , Nitratos/sangue , Nitratos/urina , Nitritos/sangue , Nitritos/urina , Fatores de Tempo
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 851(1-2): 287-91, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17349828

RESUMO

The nitrated lipids 9-nitro-oleic acid (9-NO(2)-OA) and 10-nitro-oleic acid (10-NO(2)-OA) have been reported to be present in blood of healthy humans. Free and esterified forms of 9-NO(2)-OA and 10-NO(2)-OA have been detected in human plasma at about 600 and 300 nM, respectively. These concentrations are of the same order of magnitude of circulating nitrite. In theory, 9-NO(2)-OA and 10-NO(2)-OA may interfere with the analysis of circulating nitrite and nitrate. In the present study, we investigated a possible interference of 9-NO(2)-OA and 10-NO(2)-OA with the GC-MS method of analysis of nitrite and nitrate involving derivatization by pentafluorobenzyl (PFB) bromide in aqueous acetone at 50 degrees C for 5 min (nitrite) or for 60 min (nitrite and nitrate). Our results show that 9-NO(2)-OA and 10-NO(2)-OA do not interfere with the GC-MS analysis of nitrite and nitrate as PFB derivatives in plasma and phosphate buffered saline when added to these matrices at supraphysiological concentrations of 1-10 microM. Thus, nitrated lipids such as 9-NO(2)-OA and 10-NO(2)-OA can be excluded as potential interfering substances in the GC-MS quantitative determination of nitrite and nitrate as their PFB derivatives.


Assuntos
Líquidos Corporais/química , Fluorbenzenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitratos/sangue , Nitritos/sangue , Ácido Oleico/metabolismo , Ácidos Oleicos/metabolismo , Soluções Tampão , Humanos , Ácido Oleico/química , Ácidos Oleicos/química
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 851(1-2): 240-9, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17400039

RESUMO

Dimethylamine (DMA) circulates in human blood and is excreted in the urine. Major precursor for endogenous DMA is asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is hydrolyzed to DMA and L-citrulline by dimethylarginine dimethylaminohydrolase (DDAH). In previous work, we reported a GC-MS method for the quantification of DMA in human urine. This method involves simultaneous derivatization of endogenous DMA and the internal standard (CD(3))(2)NH by pentafluorobenzoyl chloride (PFBoylCl) and extraction of the pentafluorobenzamide derivatives by toluene. In the present work, we optimized this derivatization/extraction procedure for the quantitative determination of DMA in human plasma. Optimized experimental parameters included vortex time and concentration of PFBoylCl, carbonate and internal standard. The GC-MS method was thoroughly validated and applied to measure DMA concentrations in human plasma and serum samples. GC-MS quantification was performed by selected-ion monitoring of the protonated molecules at m/z 240 for DMA and m/z 246 for (CD(3))(2)NH in the positive-ion chemical ionization mode. Circulating DMA concentration in healthy young women (n=18) was determined to be 1.43+/-0.23 micaroM in serum, 1.73+/-0.17 microM in lithium heparin plasma, and 9.84+/-1.43 microM in EDTA plasma. DMA was identified as an abundant contaminant in EDTA vacutainer tubes (9.3+/-1.9 nmol/monovette, n=6). Serum and lithium heparin vacutainer tubes contained considerably smaller amounts of DMA (0.42+/-0.01 and 0.95+/-0.01 nmol/monovette, respectively, each n=6). Serum is recommended as the most appropriate matrix for measuring DMA in human blood. The present GC-MS method should be useful for the determination of systemic and whole body DDAH activity by measuring circulating and excretory DMA in experimental and clinical studies.


Assuntos
Benzamidas/metabolismo , Dimetilaminas/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Benzamidas/química , Coleta de Amostras Sanguíneas , Dimetilaminas/química , Ácido Edético , Feminino , Humanos , Padrões de Referência , Reprodutibilidade dos Testes
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 851(1-2): 229-39, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17011246

RESUMO

Dimethylamine [DMA, (CH(3))(2)NH)] is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Here we describe a GC-MS method for the accurate and rapid quantification of DMA in human urine. The method involves use of (CD(3))(2)NH as internal standard, simultaneous derivatization with pentafluorobenzoyl chloride and extraction in toluene, and selected-ion monitoring of m/z 239 for DMA and m/z 245 for (CD(3))(2)NH in the electron ionization mode. GC-MS analysis of urine samples from 10 healthy volunteers revealed a DMA concentration of 264+/-173 microM equivalent to 10.1+/-1.64 micromol/mmol creatinine. GC-tandem MS analysis of the same urine samples revealed an ADMA concentration of 27.3+/-15.3 microM corresponding to 1.35+/-1.2 micromol/mmol creatinine. In these volunteers, a positive correlation (R=0.83919, P=0.0024) was found between urinary DMA and ADMA, with the DMA/ADMA molar ratio being 10.8+/-6.2. Elevated excretion rates of DMA (52.9+/-18.5 micromol/mmol creatinine) and ADMA (3.85+/-1.65 micromol/mmol creatinine) were found by the method in 49 patients suffering from coronary artery disease, with the DMA/ADMA molar ratio also being elevated (16.8+/-12.8). In 12 patients suffering from end-stage liver disease, excretion rates of DMA (47.8+/-19.7 micromol/mmol creatinine) and ADMA (5.6+/-1.5 micromol/mmol creatinine) were found to be elevated, with the DMA/ADMA molar ratio (9.17+/-4.2) being insignificantly lower (P=0.46). Between urinary DMA and ADMA there was a positive correlation (R=0.6655, P<0.0001) in coronary artery disease, but no correlation (R=0.27339) was found in end-stage liver disease.


Assuntos
Arginina/análogos & derivados , Benzamidas/metabolismo , Doença da Artéria Coronariana/urina , Dimetilaminas/metabolismo , Dimetilaminas/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Saúde , Hepatopatias/urina , Acetazolamida/farmacologia , Adulto , Arginina/química , Arginina/metabolismo , Arginina/urina , Benzamidas/química , Ritmo Circadiano/efeitos dos fármacos , Dimetilaminas/química , Diuréticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Qualidade , Fatores de Tempo , Urinálise
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 858(1-2): 32-41, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17825631

RESUMO

Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, is hydrolyzed to dimethylamine (DMA) and L-citrulline by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). In the present article we report on a GC-MS assay for DDAH activity in rat liver homogenate in phosphate buffered saline. The method is based on the quantitative determination of ADMA-derived DMA by GC-MS as the pentafluorobenzamide derivative. Quantification was performed by selected-ion monitoring of the protonated molecules at m/z 240 for DMA and m/z 246 for the internal standard (CD3)2NH in the positive-ion chemical ionization mode. The assay was applied to determine the enzyme kinetics in rat liver, the hepatic DDAH activity in streptozotocin-induced (50 mg/kg) diabetes in rats, and to evaluate the importance of S-nitrosothiols as DDAH inhibitors. The KM and Vmax values were determined to be 60 microM ADMA and 12.5 pmol DMA/minmg liver corresponding to 166 pmol DMA/minmg protein. Typical DDAH activity values measured in rat liver homogenate were 8.7 pmol DMA/minmg liver at added ADMA concentration of 100 microM. DDAH activity was found to be 1.7-fold elevated in diabetic as compared to non-diabetic rats (P=0.01). The SH-specific agents HgCl2, S-nitrosocysteine ethyl ester (SNACET), a synthetic lipophilic S-nitrosothiol, S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and S-nitrosohomocysteine (HcysNO) were found to inhibit DDAH activity in rat liver homogenate. The IC50 values for HcysNO, SNACET, CysNO and GSNO were estimated to be 300, 500, 700 and 1000 microM, respectively. Oral administration of 15N-labelled SNACET to two healthy volunteers (1 micromol/kg) resulted in elevated urinary excretion of 15N-labelled nitrite and nitrate, but did not reduce creatinine-corrected excretion of DMA in the urine. Our results suggest that inhibition of DDAH activity on the basis of reversible nitros(yl)ation or irreversible N-thiosulfoximidation of the sulfhydryl group of the cysteine moiety involved in the catalytic process is most likely not a rationale design of DDAH inhibitors. A major advantage of the present GC-MS assay over other assays is that DDAH activity is assessed by measuring the formation of the specific enzymatic product DMA but not the formation of unlabelled or (radio)labelled L-citrulline or the decay of the substrate ADMA. The GC-MS assay reported here should be suitable to probe for DDAH activity in various disease models.


Assuntos
Amidoidrolases/metabolismo , Arginina/análogos & derivados , Diabetes Mellitus Experimental/enzimologia , Dimetilaminas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fígado/enzimologia , Amidoidrolases/antagonistas & inibidores , Animais , Arginina/metabolismo , Catálise/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Cinética , Masculino , Estrutura Molecular , Nitratos/metabolismo , Nitratos/urina , Nitritos/metabolismo , Nitritos/urina , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , S-Nitrosotióis/química , S-Nitrosotióis/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-27343144

RESUMO

GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-2H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10µL) was diluted with acetate buffer (80µL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500µL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB]- at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H- from d0-ibuprofen and D- from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000µM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r2=0.9991). In incubation mixtures of arachidonic acid (10µM), d3-ibuprofen (10µM) or d0-ibuprofen (10µM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not change upon incubation at 37°C up to 60min. The trough pharmacokinetics of an inhaled arginine-containing ibuprofen preparation in mice was studied after once-daily treatment (0.0, 0.07, 0.4 and 2.5mg/kg body weight) for three days. A linear relationship between ibuprofen concentration in serum (10µL) and administered dose 24h after the last drug administration was observed.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Ibuprofeno/sangue , Ibuprofeno/isolamento & purificação , Extração Líquido-Líquido/métodos , Espectrometria de Massas em Tandem/métodos , Acetatos , Animais , Deutério/sangue , Deutério/química , Deutério/metabolismo , Feminino , Fluorbenzenos , Humanos , Ibuprofeno/química , Ibuprofeno/metabolismo , Limite de Detecção , Modelos Lineares , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes
16.
Circulation ; 109(7): 843-8, 2004 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-14757688

RESUMO

BACKGROUND: Oxidative stress is involved in the pathophysiology of atherosclerosis, diabetes mellitus, hypertension, obesity, and cigarette smoking, all of these being risk factors for coronary heart disease (CHD). We tested the hypothesis that risk factors of CHD are associated with abundant systemic oxidative stress. METHODS AND RESULTS: We conducted a case-control study with 93 CHD patients and 93 control subjects frequency-matched by age and sex. Urinary excretion of the F2-isoprostane 8-iso-prostaglandin (PG) F2alpha and its major urinary metabolite, 2,3-dinor-5,6-dihydro-8-iso-PGF2alpha, were measured by gas chromatography-tandem mass spectrometry. Body mass index, systolic blood pressure, and C-reactive protein were elevated in CHD patients (P<0.01). Urinary 8-iso-PGF2alpha and 2,3-dinor-5,6-dihydro-8-iso-PGF2alpha also differed, from 77 (interquartile range, 61-101) to 139 (93-231) pmol/mmol creatinine and from 120 (91-151) to 193 (140-275) pmol/mmol in control subjects and case subjects, respectively (P<0.001). 8-iso-PGF2alpha and its metabolite were highly correlated (Spearman's rho=0.664, P<0.001). HDL cholesterol was diminished in CHD patients (P<0.001). All of these characteristics predicted CHD in univariate analysis. In a multivariate model, the odds ratios were increased only for 8-iso-PGF2alpha (> or =131 pmol/mmol, P<0.001) and C-reactive protein (>3 mg/L, P<0.01), ie, by 30.8 (95% CI, 7.7-124) and 7.2 (1.9-27.6), respectively. 8-iso-PGF2alpha was found to be a novel marker in addition to known risk factors of CHD, ie, diabetes mellitus, hypercholesterolemia, hypertension, and smoking. Urinary excretion of 8-iso-PGF2alpha correlated with the number of risk factors for all subjects (P<0.001 for trend). CONCLUSIONS: 8-iso-PGF2alpha is a sensitive and independent risk marker of CHD.


Assuntos
Doença das Coronárias/urina , Dinoprosta/análogos & derivados , Dinoprosta/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Proteína C-Reativa/análise , Estudos de Casos e Controles , Comorbidade , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Diabetes Mellitus/epidemiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Alemanha/epidemiologia , Humanos , Hipercolesterolemia/epidemiologia , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Estresse Oxidativo , Fatores de Risco , Sensibilidade e Especificidade , Fumar/epidemiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-16260382

RESUMO

3-Nitrotyrosine (NO(2)Tyr) is a potential biomarker of reactive-nitrogen species (RNS) including peroxynitrite. 3-Nitrotyrosine occurs in human plasma in its free and protein-associated forms and is excreted in the urine. Measurement of 3-nitrotyrosine in human plasma is invasive and associated with numerous methodological problems. Recently, we have described an accurate method based on gas chromatography (GC)-tandem mass spectrometry (MS) for circulating 3-nitrotyrosine. The present article describes the extension of this method to urinary 3-nitrotyrosine. The method involves separation of urinary 3-nitrotyrosine from nitrite, nitrate and l-tyrosine by HPLC, preparation of the n-propyl-pentafluoropropionyltrimethylsilyl ether derivatives of endogenous 3-nitrotyrosine and the internal standard 3-nitro-l-[(2)H(3)]tyrosine, and GC-tandem MS quantification in the selected-reaction monitoring mode under negative-ion chemical ionization conditions. In urine of ten apparently healthy volunteers (years of age, 36.5+/-7.2) 3-nitrotyrosine levels were determined to be 8.4+/-10.4 nM (range, 1.6-33.2 nM) or 0.46+/-0.49 nmol/mmol creatinine (range, 0.05-1.30 nmol/mmol creatinine). The present GC-tandem MS method provides accurate values of 3-nitrotyrosine in human urine at the basal state. After oral intake of 3-nitro-l-tyrosine by a healthy volunteer (27.6 microg/kg body weight) 3-nitro-l-tyrosine appeared rapidly in the urine and was excreted following a biphasic pharmacokinetic profile. Approximately one third of administered 3-nitro-l-tyrosine was excreted within the first 8 h. The suitability of the non-invasive measurement of urinary 3-nitrotyrosine as a method of assessment of oxidative stress in humans remains to be established.


Assuntos
Tirosina/análogos & derivados , Administração Oral , Adulto , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Espécies Reativas de Nitrogênio/metabolismo , Reprodutibilidade dos Testes , Tirosina/administração & dosagem , Tirosina/isolamento & purificação , Tirosina/urina
18.
Artigo em Inglês | MEDLINE | ID: mdl-14630363

RESUMO

Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.


Assuntos
Arginina/sangue , Arginina/urina , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adulto , Arginina/análogos & derivados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase/antagonistas & inibidores , Reprodutibilidade dos Testes
19.
Artigo em Inglês | MEDLINE | ID: mdl-15081936

RESUMO

Cytochrome P450 dependent epoxidation and non-enzymic lipid peroxidation of oleic acid (cis-9-octadecenoic acid) result in the formation of cis-9,10-epoxyoctadecanoic acid (cis-EODA). This oleic acid oxide has been identified indirectly in blood and urine of humans. Reliable concentrations of circulating cis-EODA have not been reported thus far. In the present article, we report on the first GC-tandem MS method for the accurate quantitative determination in human plasma of authentic cis-EODA as its pentafluorobenzyl (PFB) ester. cis-[9,10-2H2]-EODA (cis-d2-EODA) was synthesized by chemical epoxidation of commercially available cis-[9,10-2H2]-9-octadecenoic acid and used as an internal standard for quantification. Endogenous cis-EODA and externally added cis-[9,10-2H2]-EODA were isolated from acidified plasma samples (1 ml; pH 4.5) by solvent or solid-phase extraction, converted into their PFB esters, isolated by HPLC and quantified by selected reaction monitoring. The parent ions [M-PFB]- at mass-to-charge ratio (m/z) 297 for cis-EODA and m/z 299 for (cis-d2-EODA) were subjected to collisionally-activated dissociation and the corresponding characteristic product ions at m/z 171 and 172 were monitored. In plasma of nine healthy humans (5 females, 4 males), cis-EODA was found to be present at 47.6+/-7.4 nM (mean+/-S.D.). Plasma cis-EODA levels were statistically insignificantly different (P=0.10403, t-test) in females (51.1+/-3.4 nM) and males (43.1+/-2.2 nM). cis-EODA was identified as a considerable contamination in laboratory plastic ware and found to contribute to endogenous cis-EODA by approximately 2 nM. The present GC-tandem MS method should be useful in investigating the physiological role(s) of cis-EODA in humans.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Esteáricos/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Valores de Referência
20.
Artigo em Inglês | MEDLINE | ID: mdl-12505783

RESUMO

Oleic acid, cis-9-octadecenoic acid, is the major fatty acid in mammals. Its oxide, cis-9,10-epoxyoctadecanoic acid (cis-EODA), has been identified in blood and urine of humans, its origin is, however, still unknown. Lipid peroxidation and enzyme-catalyzed epoxidation of oleic acid are two possible sources. In the present article, we investigated by HPLC and GC-MS whether cis-EODA is formed enzymatically from oleic acid by the cytochrome P450 (CYP) system. Oleic acid, cis-EODA and its hydratation product threo-9,10-dihydroxyoctadecanoic acid (threo-DiHODA) were quantitated by HPLC as their p-bromophenacyl esters. For structure elucidation by GC-MS, the pentafluorobenzyl (PFB) esters of these compounds were isolated by HPLC and converted to their trimethylsilyl ether derivatives. Liver microsomes of rats, rabbits and humans oxidized oleic acid into cis-EODA. This is the first direct evidence for the enzymatic formation of cis-EODA from oleic acid. The epoxidation of oleic acid was found to depend on CYP, NADPH+H(+), and O(2). cis-EODA was measurable in incubates of liver microsomes for up to 30 min of incubation. Maximum cis-EODA concentrations were reached after 5-7 min of incubation and found to depend upon oleic acid concentration. Isolated rat hepatocytes hydratated cis-EODA into threo-DiHODA which was further converted to unknown metabolites. However, from incubation of oleic acid with these cells we could not detect threo-DiHODA or cis-EODA. Our study suggests that circulating and excretory cis-EODA may originate, at least in part, from CYP-catalyzed epoxidation of oleic acid. GC-MS of intact cis-EODA as its PFB ester in the negative-ion chemical ionization mode should be useful in investigating the physiological role of cis-EODA in man.


Assuntos
Ácidos Graxos/biossíntese , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Ácido Oleico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Inibidores das Enzimas do Citocromo P-450 , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Cinética , Oxirredução , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA