Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625940

RESUMO

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Ligação Proteica , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
2.
PLoS Genet ; 19(11): e1010492, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939109

RESUMO

Heterochromatin is a condensed chromatin structure that represses transcription of repetitive DNA elements and developmental genes, and is required for genome stability. Paradoxically, transcription of heterochromatic sequences is required for establishment of heterochromatin in diverse eukaryotic species. As such, components of the transcriptional machinery can play important roles in establishing heterochromatin. How these factors coordinate with heterochromatin proteins at nascent heterochromatic transcripts remains poorly understood. In the model eukaryote Schizosaccharomyces pombe (S. pombe), heterochromatin nucleation can be coupled to processing of nascent transcripts by the RNA interference (RNAi) pathway, or to other post-transcriptional mechanisms that are RNAi-independent. Here we show that the RNA polymerase II processivity factor Spt5 negatively regulates heterochromatin in S. pombe through its C-terminal domain (CTD). The Spt5 CTD is analogous to the CTD of the RNA polymerase II large subunit, and is comprised of multiple repeats of an amino acid motif that is phosphorylated by Cdk9. We provide evidence that genetic ablation of Spt5 CTD phosphorylation results in aberrant RNAi-dependent nucleation of heterochromatin at an ectopic location, as well as inappropriate spread of heterochromatin proximal to centromeres. In contrast, truncation of Spt5 CTD repeat number enhanced RNAi-independent heterochromatin formation and bypassed the requirement for RNAi. We relate these phenotypes to the known Spt5 CTD-binding factor Prf1/Rtf1. This separation of function argues that Spt5 CTD phosphorylation and CTD length restrict heterochromatin through unique mechanisms. More broadly, our findings argue that length and phosphorylation of the Spt5 CTD repeat array have distinct regulatory effects on transcription.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fosforilação , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sequências Repetidas Terminais , Interferência de RNA
3.
J Biol Chem ; 299(4): 103064, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841480

RESUMO

Gßγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gßγ signaling, we investigated the functional role of Gßγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gß1γ dimer in the fibrotic response. Depletion of Gß1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gß1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gßγ with transcription complexes. Together, our findings suggest that Gß1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gßγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gßγ signaling in other cell types.


Assuntos
Fibroblastos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Regulação da Expressão Gênica , Miocárdio , RNA Polimerase II , Transcrição Gênica , Animais , Ratos , Angiotensina II/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais/fisiologia , Miocárdio/citologia , Miocárdio/patologia , Fibrose
4.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732215

RESUMO

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gß1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gß1. Our work demonstrates a unique relationship between KCTD proteins and Gß1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.


Assuntos
Proliferação de Células , Canais de Potássio , Humanos , Proliferação de Células/genética , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Methods ; 203: 139-141, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151888

RESUMO

Although technical prowess in screening for drugs has increased dramatically with the development of high content imaging, resonance energy transfer- and intensiometric biosensors, translation into the clinic has stagnated and not all drugs work in all patients. This is likely due to 1) our rudimentary understanding of disease mechanisms, and 2) our increasing use of generic, cell-based screens which have moved us away from biologically relevant tissues, organs, and patients. Here, we focus on emerging tools to undertake screening and evaluate drug actions in models ranging from heterologous expression systems, primary cells, patient-derived induced pluripotent stem cells and organoids to in vivo models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Descoberta de Drogas/métodos , Humanos
6.
Methods ; 203: 422-430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022351

RESUMO

Genetically encoded fluorescent biosensors allow intracellular signaling dynamics to be tracked in live cells and tissues using optical detection. Many such biosensors are based on the principle of Förster resonance energy transfer (FRET), and we have recently developed a simple approach for in vivo detection of FRET-based biosensor signals using fiber photometry. By combining fiber photometry with FRET-based biosensors, we were able to track GPCR-dependent signaling pathways over time, and in response to drug treatments in freely-moving adult rats. Recording from specific neuronal populations, we can quantify intracellular signaling while simultaneously measuring behavioral responses. Our approach, described in detail here, uses adeno-associated viruses infused intracerebrally in order to express genetically-encoded FRET-based biosensors. After several weeks to allow biosensor expression, fiber photometry is used in order to record drug responses in real time from freely-moving adult rats. This methodology would be compatible with other mammalian species and with many biosensors. Hence, it has wide applicability across a spectrum of neuroscience research, ranging from the study of neural circuits and behavior, to preclinical drug development and screening.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Mamíferos , Ratos , Transdução de Sinais
7.
Methods ; 203: 447-464, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933120

RESUMO

In the heart, left ventricular hypertrophy is initially an adaptive mechanism that increases wall thickness to preserve normal cardiac output and function in the face of coronary artery disease or hypertension. Cardiac hypertrophy develops in response to pressure and volume overload but can also be seen in inherited cardiomyopathies. As the wall thickens, it becomes stiffer impairing the distribution of oxygenated blood to the rest of the body. With complex cellular signalling and transcriptional networks involved in the establishment of the hypertrophic state, several model systems have been developed to better understand the molecular drivers of disease. Immortalized cardiomyocyte cell lines, primary rodent and larger animal models have all helped understand the pathological mechanisms underlying cardiac hypertrophy. Induced pluripotent stem cell-derived cardiomyocytes are also used and have the additional benefit of providing access to human samples with direct disease relevance as when generated from patients suffering from hypertrophic cardiomyopathies. Here, we briefly review in vitro and in vivo model systems that have been used to model hypertrophy and provide detailed methods to isolate primary neonatal rat cardiomyocytes as well as to generate cardiomyocytes from human iPSCs. We also describe how to model hypertrophy in a "dish" using gene expression analysis and immunofluorescence combined with automated high-content imaging.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
8.
Am J Physiol Cell Physiol ; 323(3): C813-C822, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938678

RESUMO

The role of different G protein-coupled receptors (GPCRs) in the cardiovascular system is well understood in cardiomyocytes and vascular smooth muscle cells (VSMCs). In the former, stimulation of Gs-coupled receptors leads to increases in contractility, whereas stimulation of Gq-coupled receptors modulates cellular survival and hypertrophic responses. In VSMCs, stimulation of GPCRs also modulates contractile and cell growth phenotypes. Here, we will focus on the relatively less well-studied effects of GPCRs in cardiac fibroblasts, focusing on key signaling events involved in the activation and differentiation of these cells. We also review the hierarchy of signaling events driving the fibrotic response and the communications between fibroblasts and other cells in the heart. We discuss how such events may be distinct depending on where the GPCRs and their associated signaling machinery are localized in these cells with an emphasis on nuclear membrane-localized receptors. Finally, we explore what such connections between the cell surface and nuclear GPCR signaling might mean for cardiac fibrosis.


Assuntos
Fibroblastos , Receptores Acoplados a Proteínas G , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
9.
J Biol Chem ; 297(3): 101057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34389356

RESUMO

Over the last decade, the urotensinergic system, composed of one G protein-coupled receptor and two endogenous ligands, has garnered significant attention as a promising new target for the treatment of various cardiovascular diseases. Indeed, this system is associated with various biomarkers of cardiovascular dysfunctions and is involved in changes in cardiac contractility, fibrosis, and hypertrophy contributing, like the angiotensinergic system, to the pathogenesis and progression of heart failure. Significant investment has been made toward the development of clinically relevant UT ligands for therapeutic intervention, but with little or no success to date. This system therefore remains to be therapeutically exploited. Pepducins and other lipidated peptides have been used as both mechanistic probes and potential therapeutics; therefore, pepducins derived from the human urotensin II receptor might represent unique tools to generate signaling bias and study hUT signaling networks. Two hUT-derived pepducins, derived from the second and the third intracellular loop of the receptor (hUT-Pep2 and [Trp1, Leu2]hUT-Pep3, respectively), were synthesized and pharmacologically characterized. Our results demonstrated that hUT-Pep2 and [Trp1, Leu2]hUT-Pep3 acted as biased ago-allosteric modulators, triggered ERK1/2 phosphorylation and, to a lesser extent, IP1 production, and stimulated cell proliferation yet were devoid of contractile activity. Interestingly, both hUT-derived pepducins were able to modulate human urotensin II (hUII)- and urotensin II-related peptide (URP)-mediated contraction albeit to different extents. These new derivatives represent unique tools to reveal the intricacies of hUT signaling and also a novel avenue for the design of allosteric ligands selectively targeting hUT signaling potentially.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hormônios Peptídicos/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Proliferação de Células , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Peptídeos/química , Conformação Proteica em alfa-Hélice , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
10.
Mol Pharmacol ; 100(6): 526-539, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34503973

RESUMO

Genetically encoded biosensors can be used to track signaling events in living cells by measuring changes in fluorescence emitted by one or more fluorescent proteins. Here, we describe the use of genetically encoded biosensors based on Förster resonance energy transfer (FRET), combined with high-content microscopy, to image dynamic signaling events simultaneously in thousands of neurons in response to drug treatments. We first applied this approach to examine intercellular variation in signaling responses among cultured striatal neurons stimulated with multiple drugs. Using high-content FRET imaging and immunofluorescence, we identified neuronal subpopulations with unique responses to pharmacological manipulation and used nuclear morphology to identify medium spiny neurons within these heterogeneous striatal cultures. Focusing on protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the cytoplasm and nucleus, we noted pronounced intercellular differences among putative medium spiny neurons, in both the magnitude and kinetics of signaling responses to drug application. Importantly, a conventional "bulk" analysis that pooled all cells in culture yielded a different rank order of drug potency than that revealed by single-cell analysis. Using a single-cell analytical approach, we dissected the relative contributions of PKA and ERK1/2 signaling in striatal neurons and unexpectedly identified a novel role for ERK1/2 in promoting nuclear activation of PKA in striatal neurons. This finding adds a new dimension of signaling crosstalk between PKA and ERK1/2 with relevance to dopamine D1 receptor signaling in striatal neurons. In conclusion, high-content single-cell imaging can complement and extend traditional population-level analyses and provides a novel vantage point from which to study cellular signaling. SIGNIFICANCE STATEMENT: High-content imaging revealed substantial intercellular variation in the magnitude and pattern of intracellular signaling events driven by receptor stimulation. Since individual neurons within the same population can respond differently to a given agonist, interpreting measures of intracellular signaling derived from the averaged response of entire neuronal populations may not always reflect what happened at the single-cell level. This study uses this approach to identify a new form of cross-talk between PKA and ERK1/2 signaling in the nucleus of striatal neurons.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Animais , Técnicas Biossensoriais/métodos , Núcleo Celular/metabolismo , Células Cultivadas , Corpo Estriado/citologia , Inibidores Enzimáticos/farmacologia , Feminino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397434

RESUMO

Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , RNA Polimerase II/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Catálise/efeitos dos fármacos , Ensaios Clínicos como Assunto , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Polimerase II/fisiologia
12.
J Biol Chem ; 292(13): 5443-5456, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28213525

RESUMO

Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gαq, Gα11, Gα12, and Gα13 or ß-arrestins, we showed that Gαq and Gα11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of ß-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or ß-arrestin.


Assuntos
Receptor Tipo 1 de Angiotensina/química , Angiotensina II/metabolismo , Engenharia Celular/métodos , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Métodos , Conformação Proteica , Transdução de Sinais , beta-Arrestinas/metabolismo
13.
J Biol Chem ; 292(29): 12139-12152, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28584054

RESUMO

G protein-coupled receptors (GPCRs) are conformationally dynamic proteins transmitting ligand-encoded signals in multiple ways. This transmission is highly complex and achieved through induction of distinct GPCR conformations, which preferentially drive specific receptor-mediated signaling events. This conformational capacity can be further enlarged via allosteric effects between dimers, warranting further study of these effects. Using GPCR conformation-sensitive biosensors, we investigated allosterically induced conformational changes in the recently reported F prostanoid (FP)/angiotensin II type 1 receptor (AT1R) heterodimer. Ligand occupancy of the AT1R induced distinct conformational changes in FP compared with those driven by PGF2α in bioluminescence resonance energy transfer (BRET)-based FP biosensors engineered with Renilla luciferase (RLuc) as an energy donor in the C-tail and fluorescein arsenical hairpin binder (FlAsH)-labeled acceptors at different positions in the intracellular loops. We also found that this allosteric communication is mediated through Gαq and may also involve proximal (phospholipase C) but not distal (protein kinase C) signaling partners. Interestingly, ß-arrestin-biased AT1R agonists could also transmit a Gαq-dependent signal to FP without activation of downstream Gαq signaling. This transmission of information was specific to the AT1R/FP complex, as activation of Gαq by the oxytocin receptor did not recapitulate the same phenomenon. Finally, information flow was asymmetric in the sense that FP activation had negligible effects on AT1R-based conformational biosensors. The identification of partner-induced GPCR conformations may help identify novel allosteric effects when investigating multiprotein receptor signaling complexes.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Modelos Moleculares , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Regulação Alostérica , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas Biossensoriais , Membrana Celular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Ligantes , Luciferases de Renilla/química , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/metabolismo , Multimerização Proteica , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/química , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/química , Receptores de Prostaglandina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
14.
J Cardiovasc Pharmacol ; 71(4): 193-204, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28858907

RESUMO

There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as ß-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.


Assuntos
Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Desenho de Fármacos , Reposicionamento de Medicamentos/métodos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/síntese química , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Núcleo Celular/genética , Humanos , Ligantes , Estrutura Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Methods ; 92: 1-4, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416495

RESUMO

There is significant expectation in the pharmacological community that an understanding of biased signalling will lead to the development of new drugs and a better understanding of molecular targets in the in vivo context. I think it is safe to say that Pharma is withholding judgment on the promise and potential of what they view as an interesting pharmacological curiosity. That said, beyond successes of biased ligands in clinical trials and their appearance on the market, what it is need is a clear plan and the right tools and analytical methods to characterize functional selectivity from in cellulo to in vivo. In this issue of Methods, we have put together a series of articles that help lay out a methodological and analytical framework to help get us there.


Assuntos
Química Farmacêutica/métodos , Compreensão , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Química Farmacêutica/tendências , Humanos , Ligantes
16.
Methods ; 92: 19-35, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210401

RESUMO

Ion channels play a vital role in numerous physiological functions and drugs that target them are actively pursued for development of novel therapeutic agents. Here we report a means for monitoring in real time the conformational changes undergone by channel proteins upon exposure to pharmacological stimuli. The approach relies on tracking structural rearrangements by monitoring changes in bioluminescence energy transfer (BRET). To provide proof of principle we have worked with Kir3 neuronal channels producing 10 different constructs which were combined into 17 donor-acceptor BRET pairs. Among these combinations, pairs bearing the donor Nano-Luc (NLuc) at the C-terminal end of Kir3.2 subunits and the FlAsH acceptor at the N-terminal end (NT) or the interfacial helix (N70) of Kir3.1 subunits were identified as potential tools. These pairs displayed significant changes in energy transfer upon activation with direct channel ligands or via stimulation of G protein-coupled receptors. Conformational changes associated with channel activation followed similar kinetics as channel currents. Dose response curves generated by different agonists in FlAsH-BRET assays displayed similar rank order of potency as those obtained with conventional BRET readouts of G protein activation and ion flux assays. Conformational biosensors as the ones reported herein should prove a valuable complement to other methodologies currently used in channel drug discovery.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Desenho de Fármacos , Fluoresceína/síntese química , Fluoresceína/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Analgésicos Opioides/síntese química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Conformação Proteica
17.
Methods ; 92: 11-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25962643

RESUMO

Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Receptores Acoplados a Proteínas G/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Luciferases de Renilla/síntese química , Luciferases de Renilla/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptor A2A de Adenosina/análise , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
18.
J Biol Chem ; 290(5): 3137-48, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512374

RESUMO

The angiotensin II type I (AT1R) and the prostaglandin F2α (PGF2α) F prostanoid (FP) receptors are both potent regulators of blood pressure. Physiological interplay between AT1R and FP has been described. Abdominal aortic ring contraction experiments revealed that PGF2α-dependent activation of FP potentiated angiotensin II-induced contraction, whereas FP antagonists had the opposite effect. Similarly, PGF2α-mediated vasoconstriction was symmetrically regulated by co-treatment with AT1R agonist and antagonist. The underlying canonical Gαq signaling via production of inositol phosphates mediated by each receptor was also regulated by antagonists for the other receptor. However, binding to their respective agonists, regulation of receptor-mediated MAPK activation and vascular smooth muscle cell growth were differentially or asymmetrically regulated depending on how each of the two receptors were occupied by either agonist or antagonist. Physical interactions between these receptors have never been reported, and here we show that AT1R and FP form heterodimeric complexes in both HEK 293 and vascular smooth muscle cells. These findings imply that formation of the AT1R/FP dimer creates a novel allosteric signaling unit that shows symmetrical and asymmetrical signaling behavior, depending on the outcome measured. AT1R/FP dimers may thus be important in the regulation of blood pressure.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Ratos , Transdução de Sinais/fisiologia
19.
Pharmacol Res ; 111: 434-441, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378564

RESUMO

Gßγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gßγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gßγ roles have reshaped our understanding of how important Gßγ signalling is compared to our original notion of Gßγ subunits as simple negative regulators of Gα subunits. Gßγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gßγ.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Citoesqueleto/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Humanos , Especificidade de Órgãos , Organelas/metabolismo , Conformação Proteica , Transporte Proteico , Proteólise , Especificidade da Espécie , Relação Estrutura-Atividade , Transcrição Gênica
20.
Pharmacol Rev ; 65(2): 545-77, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23406670

RESUMO

Gßγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gßγ" does not do justice to the fact that 5 Gß and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gßγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gßγ subunits regulates cellular activity, and that the granularity of individual Gß and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gßγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Animais , Sítios de Ligação , Descoberta de Drogas , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Organelas/efeitos dos fármacos , Organelas/metabolismo , Filogenia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA