Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(Database issue): D423-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193256

RESUMO

The ESTHER database, which is freely available via a web server (http://bioweb.ensam.inra.fr/esther) and is widely used, is dedicated to proteins with an α/ß-hydrolase fold, and it currently contains >30 000 manually curated proteins. Herein, we report those substantial changes towards improvement that we have made to improve ESTHER during the past 8 years since our 2004 update. In particular, we generated 87 new families and increased the coverage of the UniProt Knowledgebase (UniProtKB). We also renewed the ESTHER website and added new visualization tools, such as the Overall Table and the Family Tree. We also address two topics of particular interest to the ESTHER users. First, we explain how the different enzyme classifications (bacterial lipases, peptidases, carboxylesterases) used by different communities of users are combined in ESTHER. Second, we discuss how variations of core architecture or in predicted active site residues result in a more precise clustering of families, and whether this strategy provides trustable hints to identify enzyme-like proteins with no catalytic activity.


Assuntos
Bases de Dados de Proteínas , Hidrolases/química , Hidrolases/classificação , Bactérias/enzimologia , Domínio Catalítico , Esterases/química , Esterases/classificação , Internet , Lipase/química , Lipase/classificação , Dobramento de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/classificação , Software , Tioléster Hidrolases/química , Tioléster Hidrolases/classificação
2.
Chem Biol Interact ; 308: 179-184, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100280

RESUMO

Within the alpha/beta hydrolase fold superfamily of proteins, the COesterase group (carboxylesterase type B, block C, cholinesterases …) diverged from the other groups through simultaneous integration of an N-terminal, first disulfide bond and a significant increase in the protein mean size. This first disulfide bond ties a large Cys loop, which in the cholinesterases is named the omega loop and forms the upper part of the active center gorge, essential for the high catalytic activity of these enzymes. In some non-catalytic members of the family, the loop may be necessary for heterologous partner recognition. Reshuffling of this protein portion occurred at the time of emergence of the fungi/metazoan lineage. Homologous proteins with this first disulfide bond are absent in plants but they are found in a limited number of bacterial genomes. In prokaryotes, the genes coding for such homologous proteins may have been acquired by horizontal transfer. However, the cysteines of the first disulfide bond are often lost in bacteria. Natural expression in bacteria of CO-esterases comprising this disulfide bond may have required compensatory mutations or expression of new chaperones. This disulfide bond may also challenge expression of the eukaryote-specific cholinesterases in prokaryotic cells. Yet recently, catalytically active human cholinesterase variants with enhanced thermostability were successfully expressed in E. coli. The key was the use of a peptidic sequence optimized through the Protein Repair One Stop Shop process, an automated structure- and sequence-based algorithm for expression of properly folded, soluble and stable eukaryotic proteins. Surprisingly however, crystal structures of the optimized cholinesterase variants expressed in bacteria revealed co-existing formed and unformed states of the first disulfide bond. Whether the bond never formed, or whether it properly formed then broke during the production/analysis process, cannot be inferred from the structural data. Yet, these features suggest that the recently acquired first disulfide bond is difficult to maintain in E. coli-expressed cholinesterases. To explore the fate of the first disulfide bond throughout the cholinesterase relatives, we reanalyzed the crystal structures of representative COesterases members from natural prokaryotic or eukaryotic sources or produced as recombinant proteins in E. coli. We found that in most cases this bond is absent.


Assuntos
Proteínas de Bactérias/química , Carboxilesterase/química , Colinesterases/metabolismo , Dissulfetos/química , Proteínas de Bactérias/metabolismo , Carboxilesterase/metabolismo , Colinesterases/química , Colinesterases/genética , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Evolução Molecular , Humanos
3.
BMC Bioinformatics ; 7: 322, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16796757

RESUMO

BACKGROUND: The Lepidoptera Spodoptera frugiperda is a pest which causes widespread economic damage on a variety of crop plants. It is also well known through its famous Sf9 cell line which is used for numerous heterologous protein productions. Species of the Spodoptera genus are used as model for pesticide resistance and to study virus host interactions. A genomic approach is now a critical step for further new developments in biology and pathology of these insects, and the results of ESTs sequencing efforts need to be structured into databases providing an integrated set of tools and informations. DESCRIPTION: The ESTs from five independent cDNA libraries, prepared from three different S. frugiperda tissues (hemocytes, midgut and fat body) and from the Sf9 cell line, are deposited in the database. These tissues were chosen because of their importance in biological processes such as immune response, development and plant/insect interaction. So far, the SPODOBASE contains 29,325 ESTs, which are cleaned and clustered into non-redundant sets (2294 clusters and 6103 singletons). The SPODOBASE is constructed in such a way that other ESTs from S. frugiperda or other species may be added. User can retrieve information using text searches, pre-formatted queries, query assistant or blast searches. Annotation is provided against NCBI, UNIPROT or Bombyx mori ESTs databases, and with GO-Slim vocabulary. CONCLUSION: The SPODOBASE database provides integrated access to expressed sequence tags (EST) from the lepidopteran insect Spodoptera frugiperda. It is a publicly available structured database with insect pest sequences which will allow identification of a number of genes and comprehensive cloning of gene families of interest for scientific community. SPODOBASE is available from URL: http://bioweb.ensam.inra.fr/spodobase.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Spodoptera/genética , Animais , Análise por Conglomerados , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Biblioteca Gênica , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Software , Distribuição Tecidual
4.
Nucleic Acids Res ; 32(Database issue): D145-7, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681380

RESUMO

The alpha/beta-hydrolase fold is characterized by a beta-sheet core of five to eight strands connected by alpha-helices to form a alpha/beta/alpha sandwich. In most of the family members the beta-strands are parallels, but some show an inversion in the order of the first strands, resulting in antiparallel orientation. The members of the superfamily diverged from a common ancestor into a number of hydrolytic enzymes with a wide range of substrate specificities, together with other proteins with no recognized catalytic activity. In the enzymes the catalytic triad residues are presented on loops, of which one, the nucleophile elbow, is the most conserved feature of the fold. Of the other proteins, which all lack from one to all of the catalytic residues, some may simply be 'inactive' enzymes while others are known to be involved in surface recognition functions. The ESTHER database (http://bioweb.ensam.inra.fr/esther) gathers and annotates all the published information related to gene and protein sequences of this superfamily, as well as biochemical, pharmacological and structural data, and connects them so as to provide the bases for studying structure-function relationships within the family. The most recent developments of the database, which include a section on human diseases related to members of the family, are described.


Assuntos
Bases de Dados de Proteínas , Hidrolases/química , Proteínas/química , Proteínas/classificação , Animais , Biologia Computacional , Humanos , Internet , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
5.
Chem Biol Interact ; 157-158: 339-43, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16297901

RESUMO

The structural alpha/beta-hydrolase fold is characterized by a beta-sheet core of five to eight strands connected by alpha-helices to form a alpha/beta/alpha sandwich. The superfamily members, exemplified by the cholinesterases, diverged from a common ancestor into a number of hydrolytic enzymes displaying a wide range of substrate specificities, along with proteins with no recognized hydrolytic activity. In the enzymes, the catalytic triad residues are presented on loops of which one, the nucleophile elbow, is the most conserved feature of the fold. Of the other proteins, which all lack from one to all of the catalytic residues, some may simply be 'inactive' enzymes while others have been shown to be involved in heterologous surface recognition functions. The ESTHER (for esterases, alpha/beta-hydrolase enzymes and relatives) database (http://bioweb.ensam.inra.fr.esther) gathers and annotates all the published pieces of information (gene and protein sequences; biochemical, pharmacological, and structural data) related to the superfamily, and connects them together to provide the bases for studying structure-function relationships within the superfamily. The most recent developments of the database are presented.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas/tendências , Hidrolases/química , Hidrolases/classificação , Colinesterases/química , Colinesterases/classificação , Colinesterases/genética , Colinesterases/metabolismo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Internet , Cadeias de Markov , Conformação Proteica , Dobramento de Proteína
6.
J Mol Neurosci ; 53(3): 362-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24390353

RESUMO

A cholinesterase activity can be found in all kingdoms of living organism, yet cholinesterases involved in cholinergic transmission appeared only recently in the animal phylum. Among various proteins homologous to cholinesterases, one finds neuroligins. These proteins, with an altered catalytic triad and no known hydrolytic activity, display well-identified cell adhesion properties. The availability of complete genomes of a few metazoans provides opportunities to evaluate when these two protein families emerged during evolution. In bilaterian animals, acetylcholinesterase co-localizes with proteins of cholinergic synapses while neuroligins co-localize and may interact with proteins of excitatory glutamatergic or inhibitory GABAergic/glycinergic synapses. To compare evolution of the cholinesterases and neuroligins with other proteins involved in the architecture and functioning of synapses, we devised a method to search for orthologs of these partners in genomes of model organisms representing distinct stages of metazoan evolution. Our data point to a progressive recruitment of synaptic components during evolution. This finding may shed light on the common or divergent developmental regulation events involved into the setting and maintenance of the cholinergic versus glutamatergic and GABAergic/glycinergic synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Colinesterases/genética , Evolução Molecular , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Colinesterases/química , Colinesterases/metabolismo , Humanos
7.
Chem Biol Interact ; 203(1): 266-8, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23010363

RESUMO

Alpha/beta hydrolases function as hydrolases, lyases, transferases, hormone precursors or transporters, chaperones or routers of other proteins. The amount of structural and functional available data related to this protein superfamily expands exponentially, as does the number of proteins classified as alpha/beta hydrolases despite poor sequence similarity and lack of experimental data. However the superfamily can be rationally divided according to sequence or structural homologies, leading to subfamilies of proteins with potentially similar functions. Since the discovery of proteins homologous to cholinesterases but devoid of enzymatic activity (e.g., the neuroligins), divergent functions have been ascribed to members of other subfamilies (e.g., lipases, dipeptidylaminopeptidase IV, etc.). To study the potentially moonlighting properties of alpha/beta hydrolases, the ESTHER database (for ESTerase and alpha/beta Hydrolase Enzymes and Relatives; http://bioweb.ensam.inra.fr/esther), which collects, organizes and disseminates structural and functional information related to alpha/beta hydrolases, has been updated with new tools and the web server interface has been upgraded. A new Overall Table along with a new Tree based on HMM models has been included to tentatively group subfamilies. These tools provide starting points for phylogenetic studies aimed at pinpointing the origin of duplications leading to paralogous genes (e.g., acetylcholinesterase versus butyrylcholinesterase, or neuroligin versus carboxylesterase). Another of our goals is to implement new tools to distinguish catalytically active enzymes from non-catalytic proteins in poorly studied or annotated subfamilies.


Assuntos
Hidrolases/química , Hidrolases/classificação , Animais , Domínio Catalítico/genética , Bases de Dados de Proteínas , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Mutação , Filogenia , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA