Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(10): 6380-6390, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35507024

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been a focal point of environmental chemistry and chemical regulation in recent years, culminating in a shift from individual PFAS regulation toward a PFAS group regulatory approach in Europe. PFASs are a highly diverse group of substances, and knowledge about this group is still scarce beyond the well-studied, legacy long-chain, and short-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs). Herein, quantitative and semiquantitative data for 43 legacy short-chain and ultra-short-chain PFASs (≤2 perfluorocarbon atoms for PFCAs, ≤3 for PFSAs and other PFASs) in 46 water samples collected from 13 different sources of German drinking water are presented. The PFASs considered include novel compounds like hexafluoroisopropanol, bis(trifluoromethylsulfonyl)imide, and tris(pentafluoroethyl)trifluorophosphate. The ultra-short-chain PFASs trifluoroacetate, perfluoropropanoate, and trifluoromethanesulfonate were ubiquitous and present at the highest concentrations (98% of sum target PFAS concentrations). "PFAS total" parameters like the adsorbable organic fluorine (AOF) and total oxidizable precursor (TOP) assay were found to provide only an incomplete picture of PFAS contamination in these water samples by not capturing these highly prevalent ultra-short-chain PFASs. These ultra-short-chain PFASs represent a major challenge for drinking water production and show that regulation in the form of preventive measures is required to manage them.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Bioensaio , Monitoramento Ambiental , Flúor , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 56(15): 10857-10867, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35868007

RESUMO

Persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances have been recognized as a threat to both the aquatic environment and to drinking water resources. These substances are currently prioritized for regulatory action by the European Commission, whereby a proposal for the inclusion of hazard classes for PMT and vPvM substances has been put forward. Comprehensive monitoring data for many PMT/vPvM substances in drinking water sources are scarce. Herein, we analyze 34 PMT/vPvM substances in 46 surface water, groundwater, bank filtrate, and raw water samples taken throughout Germany. Results of the sampling campaign demonstrated that known PMT/vPvM substances such as 1H-benzotriazole, melamine, cyanuric acid, and 1,4-dioxane are responsible for substantial contamination in the sources of German drinking water. In addition, the results revealed the widespread presence of the emerging substances 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and diphenylguanidine (DPG). A correlation analysis showed a pronounced co-occurrence of PMT/vPvM substances associated predominantly with consumer or professional uses and also demonstrated an inhomogeneous co-occurrence for substances associated mainly with industrial use. These data were used to test the hypothesis that most PMT/vPvM substances pass bank filtration without significant concentration reduction, which is one of the main reasons for introducing PMT/vPvM as a hazard class within Europe.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Filtração , Alemanha , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 802: 149799, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450436

RESUMO

Tire wear particles are not only the type of polymer particles most prevalent in the environment but also act as source of various organic micropollutants, many of which are likely still unknown. We extracted particles prepared from nine tires in artificial freshwater (28 d) with the goal to characterize leachables (max intensity >105 in artificial freshwater), which are tire-borne water contaminants. A subsequent extraction of these particles with acetone (3 h) was used to assess the long-term leaching potential. A suspect and nontarget screening in aliquots of each extract led to the detection of 214 organic substances of which 145 were classified as leachables. The intrinsic polarity of some leachables (mean log D (pH 7.4) 3.9), which facilitates an increased aquatic mobility, highlights their potential as environmental water contaminants. With N,N'-diphenylguanidine (DPG) and benzothiazole, two of the ten unequivocally identified leachables, are classified as potential persistent, mobile and toxic substance by the German Environment Agency. Of the identified chemicals DPG showed the highest intensities in aqueous extracts and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD), the precursor of 6-PPD-quinone, in acetone extracts. A comparison between the 69 detected suspects and 174 high-intensity signals (>106) detected in the nontarget screening led to an overlap of only 29 features. A detailed investigation of the remaining high-intensity suspects revealed the presence of 13 proposed DPG reaction products, further highlighting the chemical complexity of tires. Consequently, we conclude that there are many, often still unrecognized chemicals entering the aquatic environment through leaching from tire wear particles.


Assuntos
Poluentes Químicos da Água , Água , Espectrometria de Massas , Polímeros , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA