Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 145(7): 2554-2561, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32072995

RESUMO

Nucleic acid amplification techniques such as real-time PCR are essential instruments for the identification and quantification of viruses. They are fast, very sensitive and highly specific, but often require elaborate and labor intensive sample preparation to achieve successful amplification of the target sequence. In this work we demonstrate the complete microfluidic preparation of amplifiable virus DNA from dilute specimens. Our approach combines free-flow electrophoretic preconcentration of viral particles with thermal lysis and gel-electrophoretic nucleic acid extraction on a single device. The on-chip preconcentration achieves a capture efficiency of >99% for dilute suspensions of bacteriophage PhiX174. Following preconcentration, phages are thermally lysed and released DNA is recovered after 40 s of on-chip gel-electrophoresis with a recovery rate of ∼73%. Furthermore we demonstrate a detection limit of ∼1 PFU ml-1 (∼0.02 DNA copies per µl) for the detection of bacteriophage PhiX174 by PCR. To simplify operation of the device, we describe the development of a custom-made chip holder as well as a compact peristaltic pump and power supply, which enable user-friendly operation with low risk of cross-contamination and high potential for automation in the field of point-of-care diagnostics.


Assuntos
Bacteriófago phi X 174/genética , DNA Viral/metabolismo , Eletroforese/métodos , DNA Viral/isolamento & purificação , Dispositivos Lab-On-A-Chip , Limite de Detecção , Reação em Cadeia da Polimerase em Tempo Real
2.
Micromachines (Basel) ; 11(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560308

RESUMO

We investigate the compatibility of three 3D printing materials towards real-time recombinase polymerase amplification (rtRPA). Both the general ability of the rtRPA reaction to occur while in contact with the cured 3D printing materials as well as the residual autofluorescence and fluorescence drift in dependence on post curing of the materials is characterized. We 3D printed monolithic rtRPA microreactors and subjected the devices to different post curing protocols. Residual autofluorescence and drift, as well as rtRPA kinetics, were then measured in a custom-made mobile temperature-controlled fluorescence reader (mTFR). Furthermore, we investigated the effects of storage on the devices over a 30-day period. Finally, we present the single- and duplex rtRPA detection of both the organism-specific Klebsiella haemolysin (khe) gene and the New Delhi metallo-ß-lactamase 1 (blaNDM-1) gene from Klebsiella pneumoniae. Results: No combination of 3D printing resin and post curing protocol completely inhibited the rtRPA reaction. The autofluorescence and fluorescence drift measured were found to be highly dependent on printing material and wavelength. Storage had the effect of decreasing the autofluorescence of the investigated materials. Both khe and blaNDM-1 were successfully detected by single- and duplex-rtRPA inside monolithic rtRPA microreactors printed from NextDent Ortho Clear (NXOC). The reaction kinetics were found to be close to those observed for rtRPA performed in a microcentrifuge tube without the need for mixing during amplification. Singleplex assays for both khe and blaNDM-1 achieved a limit of detection of 2.5 × 101 DNA copies while the duplex assay achieved 2.5 × 101 DNA copies for khe and 2.5 × 102 DNA copies for blaNDM-1. Impact: We expand on the state of the art by demonstrating a technology that can manufacture monolithic microfluidic devices that are readily suitable for rtRPA. The devices exhibit very low autofluorescence and fluorescence drift and are compatible with RPA chemistry without the need for any surface pre-treatment such as blocking with, e.g., BSA or PEG.

3.
Sci Rep ; 10(1): 5770, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238843

RESUMO

In this work we show how DNA microarrays can be produced batch wise on standard microscope slides in a fast, easy, reliable and cost-efficient way. Contrary to classical microarray generation, the microarrays are generated via digital solid phase PCR. We have developed a cavity-chip system made of a PDMS/aluminum composite which allows such a solid phase PCR in a scalable and easy to handle manner. For the proof of concept, a DNA pool composed of two different DNA species was used to show that digital PCR is possible in our chips. In addition, we demonstrate that DNA microarray generation can be realized with different laboratory equipment (slide cycler, manually in water baths and with an automated cartridge system). We generated multiple microarrays and analyzed over 13,000 different monoclonal DNA spots to show that there is no significant difference between the used equipment. To show the scalability of our system we also varied the size and number of the cavities located in the array region up to more than 30,000 cavities with a volume of less than 60 pL per cavity. With this method, we present a revolutionary tool for novel DNA microarrays. Together with new established label-free measurement systems, our technology has the potential to give DNA microarray applications a new boost.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , DNA/análise , Desenho de Equipamento , Vidro/química , Microscopia , Microtecnologia/métodos , Reação em Cadeia da Polimerase/instrumentação
4.
PLoS One ; 14(12): e0226571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856234

RESUMO

We present a simple to operate microfluidic chip system that allows for the extraction of miRNAs from cells with minimal hands-on time. The chip integrates thermoelectric lysis (TEL) of cells with native gel-electrophoretic elution (GEE) of released nucleic acids and uses non-toxic reagents while requiring a sample volume of only 5 µl. These properties as well as the fast process duration of 180 seconds make the system an ideal candidate to be part of fully integrated point-of-care applications for e.g. the diagnosis of cancerous tissue. GEE was characterized in comparison to state-of-the-art silica column (SC) based RNA recovery using the mirVana kit (Ambion) as a reference. A synthetic miRNA (miR16) as well as a synthetic snoRNA (SNORD48) were subjected to both GEE and SC. Subsequent detection by stem-loop RT-qPCR demonstrated a higher yield for miRNA recovery by GEE. SnoRNA recovery performance was found to be equal for GEE and SC, indicating yield dependence on RNA length. Coupled operation of the chip (TEL + GEE) was characterized using serial dilutions of 5 to 500 MCF7 cancer cells in suspension. Samples were split and cells were subjected to either on-chip extraction or SC. Eluted miRNAs were then detected by stem-loop RT-qPCR without any further pre-processing. The extraction yield from cells was found to be up to ~200-fold higher for the chip system under non-denaturing conditions. The ratio of eluted miRNAs is shown to be dependent on the degree of complexation with miRNA associated proteins by comparing miRNAs purified by GEE from heat-shock and proteinase-K based lysis.


Assuntos
Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , MicroRNAs/isolamento & purificação , RNA Nucleolar Pequeno/isolamento & purificação , Fatores de Tempo
5.
Lab Chip ; 12(21): 4576-80, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22952055

RESUMO

With a view to developing a rapid pathogen detection system utilizing isothermal nucleic acid amplification, the necessary micro-mixing step is innovatively implemented on a chip. Passive laminar flow mixing of two 6.5 µl batches differing in viscosity is performed within a microfluidic chamber. This is achieved with a novel chip space-saving phaseguide design which allows, for the first time, the complete integration of a passive mixing structure into a target chamber. Sequential filling of batches prior to mixing is demonstrated. Simulation predicts a reduction of diffusive mixing time from hours down to one minute. A simple and low-cost fabrication method is used which combines dry film resist technology and direct wafer bonding. Finally, an isothermal nucleic acid detection assay is successfully implemented where fluorescence results are measured directly from the chip after a one minute mixing sequence. In combination with our previous work, this opens up the way towards a fully integrated pathogen detection system in a lab-on-a-chip format.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/análise , Temperatura , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA