Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 26(1): 1-13, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965991

RESUMO

Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

2.
Kidney Int ; 99(2): 443-455, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32712166

RESUMO

Downstream mechanisms that lead to podocyte injury following phospholipase A2 receptor (PLA2R) autoimmunity remain elusive. To help define this we compared urinary metabolomic profiles of patients with PLA2R-associated membranous nephropathy (MN) at the time of kidney biopsy with those of patients with minimal change disease (MCD) and to healthy individuals. Among the metabolites differentially expressed in patients with PLA2R-associated MN compared to healthy individuals, fumarate was the only significant differentially expressed metabolite in PLA2R-associated MN compared to MCD [fold-difference vs. healthy controls and vs. MCD: 1.76 and 1.60, respectively]. High urinary fumarate levels could predict the composite outcome of PLA2R-associated MN. Fumarate hydratase, which hydrolyzes fumarate, colocalized with podocalyxin, and its expression was lower in glomerular sections from patients with PLA2R-associated MN than in those from healthy individuals, patients with non-PLA2R-associated MN or MCD. Podocytes stimulated with IgG purified from serum with a high anti-PLA2R titer (MN-IgG) decreased expression of fumarate hydratase and increased fumarate levels. These changes were coupled to alterations in the expression of molecules involved in the phenotypic profile of podocytes (WT1, ZO-1, Snail, and fibronectin), an increase in albumin flux across the podocyte layer and the production of reactive oxygen species in podocytes. However, overexpression of fumarate hydratase ameliorated these alterations. Furthermore, knockdown of fumarate hydratase exhibited synergistic effects with MN-IgG treatment. Thus, fumarate may promote changes in the phenotypic profiles of podocytes after the development of PLA2R autoimmunity. These findings suggest that fumarate could serve as a potential target for the treatment of PLA2R-associated MN.


Assuntos
Glomerulonefrite Membranosa , Podócitos , Autoanticorpos , Autoimunidade , Fumaratos , Humanos , Receptores da Fosfolipase A2
3.
Mar Drugs ; 19(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804766

RESUMO

Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Organismos Aquáticos/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esteróis/farmacologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Antioxidantes/isolamento & purificação , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Esteróis/isolamento & purificação , Esteróis/farmacocinética
4.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073488

RESUMO

Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Nefropatias/tratamento farmacológico , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Obstrução Ureteral/tratamento farmacológico , Agonistas do Receptor A3 de Adenosina/síntese química , Agonistas do Receptor A3 de Adenosina/química , Animais , Fibrose , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Ligantes , Masculino , Camundongos , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361023

RESUMO

Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Rim/efeitos dos fármacos , Resveratrol/farmacologia , Envelhecimento/metabolismo , Animais , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Sirtuína 1/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445781

RESUMO

The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-ß signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Benzoquinonas/farmacologia , Rim/efeitos dos fármacos , Nigella sativa/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153232

RESUMO

Acute kidney injury (AKI), a critical syndrome characterized by a rapid decrease of kidney function, is a global health problem. Src family kinases (SFK) are proto-oncogenes that regulate diverse biological functions including mitochondrial function. Since mitochondrial dysfunction plays an important role in the development of AKI, and since unbalanced SFK activity causes mitochondrial dysfunction, the present study examined the role of SFK in AKI. Lipopolysaccharides (LPS) inhibited mitochondrial biogenesis and upregulated the expression of NGAL, a marker of tubular epithelial cell injury, in mouse proximal tubular epithelial (mProx) cells. These alterations were prevented by PP2, a pan SFK inhibitor. Importantly, PP2 pretreatment significantly ameliorated LPS-induced loss of kidney function and injury including inflammation and oxidative stress. The attenuation of LPS-induced AKI by PP2 was accompanied by the maintenance of mitochondrial biogenesis. LPS upregulated SFK, especially Fyn and Src, in mouse kidney as well as in mProx cells. These data suggest that Fyn and Src kinases are involved in the pathogenesis of LPS-induced AKI, and that inhibition of Fyn and Src kinases may have a potential therapeutic effect, possibly via improving mitochondrial biogenesis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Lipopolissacarídeos , Doenças Mitocondriais/tratamento farmacológico , Pirimidinas/uso terapêutico , Quinases da Família src/antagonistas & inibidores , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/patologia , Biogênese de Organelas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia
8.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255934

RESUMO

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage kidney disease. Renin-angiotensin system inhibitors such as losartan are the predominant therapeutic options in clinical practice to treat DKD. Therefore, it is necessary to identify DKD-related metabolic profiles that are affected by losartan. To investigate the change in metabolism associated with the development of DKD, we performed global and targeted metabolic profiling using 800 MHz nuclear magnetic resonance spectroscopy of urine samples from streptozotocin-induced diabetic mice (DM) with or without losartan administration. A principal component analysis plot showed that the metabolic pattern in the losartan-treated diabetic mice returned from that in the DM group toward that in the control mice (CM). We found that 33 urinary metabolites were significantly changed in DM compared with CM, and the levels of 16 metabolites among them, namely, glucose, mannose, myo-inositol, pyruvate, fumarate, 2-hydroxyglutarate, isobutyrate, glycine, threonine, dimethylglycine, methyldantoin, isoleucine, leucine, acetylcarnitine, 3-hydroxy-3-methylglutarate, and taurine, shifted closer to the control level in response to losartan treatment. Pathway analysis revealed that these metabolites were associated with branched-chain amino acid degradation; taurine and hypotaurine metabolism; glycine, serine, and threonine metabolism; the tricarboxylic acid cycle; and galactose metabolism. Our results demonstrate that metabolomic analysis is a useful tool for identifying the metabolic pathways related to the development of DKD affected by losartan administration and may contribute to the discovery of new therapeutic agents for DKD.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/urina , Losartan/uso terapêutico , Metaboloma , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Análise Discriminante , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas , Metabolômica , Camundongos Endogâmicos C57BL , Reconhecimento Automatizado de Padrão , Análise de Componente Principal , Estreptozocina
9.
Pflugers Arch ; 471(6): 829-843, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30617744

RESUMO

Hydrogen peroxide (H2O2) produced endogenously can cause mitochondrial dysfunction and metabolic complications in various cell types by inducing oxidative stress. In the liver, oxidative and endoplasmic reticulum (ER) stress affects the development of non-alcoholic fatty liver disease (NAFLD). Although a link between both stresses and fatty liver diseases has been suggested, few studies have investigated the involvement of catalase in fatty liver pathogenesis. We examined whether catalase is associated with NAFLD, using catalase knockout (CKO) mice and the catalase-deficient human hepatoma cell line HepG2. Hepatic morphology analysis revealed that the fat accumulation was more prominent in high-fat diet (HFD) CKO mice compared to that in age-matched wild-type (WT) mice, and lipid peroxidation and H2O2 release were significantly elevated in CKO mice. Transmission electron micrographs indicated that the liver mitochondria from CKO mice tended to be more severely damaged than those in WT mice. Likewise, mitochondrial DNA copy number and cellular ATP concentrations were significantly lower in CKO mice. In fatty acid-treated HepG2 cells, knockdown of catalase accelerated cellular lipid accumulation and depressed mitochondrial biogenesis, which was recovered by co-treatment with N-acetyl cysteine or melatonin. This effect of antioxidant was also true in HFD-fed CKO mice, suppressing fatty liver development and improving hepatic mitochondrial function. Expression of ER stress marker proteins and hepatic fat deposition also increased in normal-diet, aged CKO mice compared to WT mice. These findings suggest that H2O2 production may be an important event triggering NAFLD and that catalase may be an attractive therapeutic target for preventing NAFLD.


Assuntos
Catalase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Obesidade/complicações , Animais , Antioxidantes , Estresse do Retículo Endoplasmático , Células Hep G2 , Humanos , Peróxido de Hidrogênio/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/enzimologia , Estresse Oxidativo
10.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212646

RESUMO

Ionizing radiation (IR) has been widely used in the treatment of cancer. Radiation-induced DNA damage triggers the DNA damage response (DDR), which can confer radioresistance and early local recurrence by activating DNA repair pathways. Since karyopherin-α2 (KPNA2), playing an important role in nucleocytoplasmic transport, was significantly increased by IR in our previous study, we aimed to determine the function of KPNA2 with regard to DDR. Exposure to radiation upregulated KPNA2 expression in human colorectal cancer HT29 and HCT116 cells and breast carcinoma MDA-MB-231 cells together with the increased expression of DNA repair protein BRCA1. The knockdown of KPNA2 effectively increased apoptotic cell death via inhibition of BRCA1 nuclear import following IR. Therefore, we propose that KPNA2 is a potential target for overcoming radioresistance via interruption to DDR.


Assuntos
Proteína BRCA1/metabolismo , Morte Celular/efeitos da radiação , Sobrevivência Celular/fisiologia , alfa Carioferinas/metabolismo , Apoptose/efeitos da radiação , Proteína BRCA1/genética , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/genética , Ensaio Cometa , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Células HCT116 , Células HT29 , Humanos , Imunoprecipitação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Radiação Ionizante
11.
Arch Biochem Biophys ; 646: 90-97, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621522

RESUMO

Diabetic kidney disease (DKD) involves various pathogenic processes during progression to end stage renal disease, and activated metabolic pathways might be changing based on major pathophysiologic mechanisms as DKD progresses. In this study, nuclear magnetic resonance spectroscopy (NMR)-based metabolic profiling was performed in db/db mice to suggest potential biomarkers for early detection and its progression. We compared concentrations of serum and urinary metabolites between db/m and db/db mice at 8 or 20 weeks of age and investigated whether changes between 8 and 20 weeks in each group were significant. The metabolic profiles demonstrated significantly increased urine levels of glucose and tricarboxylic acid cycle intermediates at both 8 and 20 weeks of age in db/db mice. These intermediates also exhibited strong positive associations with urinary albumin excretion, suggesting that they may be potential biomarkers for early diagnosis. On the contrary, branched chain amino acid and homocysteine-methionine metabolism were activated early in the disease, whereas ketone and fatty acid metabolism were significantly changed in the late phase of the disease. We demonstrated phase-specific alterations in metabolites during progression of DKD. This study provides insights into perturbed mechanisms during evolution of the disease and identifies potential novel biomarkers for DKD.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Metaboloma/fisiologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/urina , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/urina , Progressão da Doença , Análise dos Mínimos Quadrados , Masculino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Curva ROC , Fatores de Tempo
12.
Pharmacology ; 102(3-4): 180-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099457

RESUMO

BACKGROUND: NADPH oxidases (Nox) is a major enzyme system contributing to oxidative stress, which plays an important role in the pathogenesis of diabetic kidney disease (DKD). We have shown an elevation of renal Nox1, Nox2, and Nox4 in diabetic mice. APX-115, a pan-Nox inhibitor, attenuated the progression of DKD in mice. As the standard diabetic mice cannot fully mimic human DKD, the present study was aimed to show the dose-dependent effect and to provide a confirmatory evidence of APX-115 in attenuating DKD in diabetic rats. METHOD: Type 1 diabetes was induced by a single 60 mg/kg intraperitoneal injection of streptozotocin in Sprague-Dawley rats. 0.5, 5, or 30 mg APX-115/kg/day or losartan 1 mg/kg/day were administered orally to diabetic rats for 8 weeks. RESULTS: APX-115 treatment showed an improvement in kidney function and tubular and podocyte -injury, as well as attenuation of inflammation, fibrosis, and oxidative stress as much as losartan, a comparative drug and mainstay treatment in DKD. Therapeutic effect of APX-115 was exhibited in a dose-dependent manner; a dose of 30 mg/kg displayed a superior efficacy. CONCLUSION: This finding verified the pre-clinical data of APX-115 in protecting against DKD, which is important to bring APX-115 toward the next stage of drug development.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , Losartan/farmacologia , Masculino , NADPH Oxidases/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Korean J Physiol Pharmacol ; 22(5): 567-575, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181703

RESUMO

Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.

14.
Am J Physiol Renal Physiol ; 312(2): F323-F334, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465995

RESUMO

Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Albuminúria/tratamento farmacológico , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Dieta Hiperlipídica , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , Albuminúria/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Relação Dose-Resposta a Droga , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Resistência à Insulina/fisiologia , Túbulos Renais Proximais/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 491(4): 890-896, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28754587

RESUMO

8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, has been recently shown to exert anti-inflammatory effects through inhibition of Rac1. Inflammation in adipose tissue is a hallmark of obesity-induced insulin resistance, but the therapeutic potential of 8-OHdG in treatment of metabolic diseases has not been fully elucidated. The aim of this study was to examine the effect of exogenously administered 8-OHdG on adipose tissue and whole body metabolism. In cultured adipocytes, 8-OHdG inhibited adipogenesis and reversed TNFα-induced insulin resistance. In high-fat diet (HFD)-induced obese mice, 8-OHdG administration blunted the rise in body weight and fat mass. The decrease in adipose tissue mass by 8-OHdG was due to reduced adipocyte hypertrophy through induction of adipose triglyceride lipase and inhibition of fatty acid synthase expression. 8-OHdG also inhibited the infiltration of macrophages, resulting in amelioration of adipose tissue inflammation and adipokine dysregulation. Moreover, 8-OHdG administration ameliorated adipocyte as well as systemic insulin sensitivity. Both in vivo and in vitro results showed that 8-OHdG induces AMPK activation and reduces JNK activation in adipocytes. In conclusion, our results show that orally administered 8-OHdG protects against HFD-induced metabolic disorders by regulating adipocyte metabolism.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Desoxiguanosina/análogos & derivados , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Obesidade/tratamento farmacológico , Células 3T3-L1 , 8-Hidroxi-2'-Desoxiguanosina , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Desoxiguanosina/administração & dosagem , Desoxiguanosina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
16.
Toxicol Appl Pharmacol ; 333: 17-25, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818514

RESUMO

Although favorable immune responses to low-dose irradiation (LDI) have been observed in normal mice, i.e., a hormesis effect, little is known about the effects of LDI in infectious diseases. In this study, we examined the effects of LDI on mice with sepsis, a severe and often lethal hyperinflammatory response to bacteria. Female C57BL/6 mice were whole-body irradiated with 10cGy 48h before Escherichia coli infection, and survival, bacterial clearance, cytokines, and antioxidants were quantified. LDI pretreatment significantly increased survival from 46.7% in control mice to 75% in mice with sepsis. The bacterial burden was significantly lower in the blood, spleen, and kidney of LDI-treated mice than in those of control septic mice. The levels of pro-inflammatory cytokines, e.g., IL-1ß and IL-6, as well as anti-inflammatory IL-10 were markedly reduced in pre-LDI septic mice. Nitric oxide production by peritoneal macrophages was also reduced in pre-LDI septic mice. Immune cells in the spleen increased and Nrf2 and HO-1 were induced in pre-LDI septic mice. LDI stimulates the immune response and minimizes lethality in septic mice via enhanced bacterial clearance and reduced initial proinflammatory responses.


Assuntos
Infecções por Escherichia coli/radioterapia , Sepse/radioterapia , Irradiação Corporal Total , Animais , Contagem de Colônia Microbiana , Citocinas/sangue , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Rim/microbiologia , Rim/efeitos da radiação , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Células RAW 264.7 , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia , Baço/microbiologia , Baço/efeitos da radiação
17.
Korean J Physiol Pharmacol ; 21(3): 317-325, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28461774

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and PGC1α mRNA expression were decreased in both CKO and WT mice at HFD feeding, GSK3ß phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

18.
Mediators Inflamm ; 2016: 8675905, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597806

RESUMO

Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Catalase/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Amitrol (Herbicida)/farmacologia , Animais , Western Blotting , Catalase/genética , Linhagem Celular , Células Cultivadas , Imuno-Histoquímica , Resistência à Insulina , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
19.
Korean J Physiol Pharmacol ; 19(3): 269-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954133

RESUMO

Chronic inflammation has been proposed as one of the main molecular mechanisms of aging and age-related diseases. Although evidence in humans is limited, short-term calorie restriction (CR) has been shown to have anti-inflammatory effects in aged experimental animals. We reported on the long-term treatment of daumone, a synthetic pheromone secreted by Caenorhabditis elegans in an energy deficient environment, extends the life-span and attenuates liver injury in aged mice. The present study examined whether late onset short-term treatment of daumone exerts anti-inflammatory effects in the livers of aged mice. Daumone was administered orally at doses of 2 or 20 mg/kg/day for 5 weeks to 24-month-old male C57BL/6J mice. Increased liver macrophage infiltration and gene expression of proinflammatory cytokines in aged mice were significantly attenuated by daumone treatment, suggesting that short-term oral administration of daumone may have hepatoprotective effects. Daumone also dose-dependently suppressed tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NF-κB) phosphorylation in HepG2 cells. The present data demonstrated that short-term treatment of daumone has anti-inflammatory effects in aged mouse livers possibly through suppression of NF-κB signaling and suggest that daumone may become a lead compound targeting aging and age-associated diseases.

20.
Am J Pathol ; 183(5): 1488-1497, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001475

RESUMO

Adenosine in the normal kidney significantly elevates in response to cellular damage. The renal A3 adenosine receptor (A3AR) is up-regulated under stress, but the therapeutic effects of A3AR antagonists on chronic kidney disease are not fully understood. The present study examined the effect of LJ-1888 [(2R,3R,4S)-2-[2-chloro-6-(3-iodobenzylamino)-9H-purine-9-yl]-tetrahydrothiophene-3,4-diol], a newly developed potent, selective, species-independent, and orally active A3AR antagonist, on unilateral ureteral obstruction (UUO)-induced renal fibrosis. Pretreatment with LJ-1888 inhibited UUO-induced fibronectin and collagen I up-regulation in a dose-dependent manner. Masson's trichrome staining confirmed that LJ-1888 treatment effectively reduced UUO-induced interstitial collagen accumulation. Furthermore, delayed administration of LJ-1888 showed an equivalent therapeutic effect on tubulointerstitial fibrosis to that of losartan. Small-interfering A3AR transfection effectively inhibited transforming growth factor-ß1 (TGF-ß1)-induced fibronectin and collagen I up-regulation in proximal tubular cells similar to LJ-1888, confirming that the renoprotective effect of LJ-1888 resulted from A3AR blockade. UUO- or TGF-ß1-induced c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation decreased significantly after LJ-1888 administration. A3AR blockade reduced UUO- or TGF-ß1-induced up-regulation of lysyl oxidase, which induces cross-linking of extracellular matrix, suggesting that LJ-1888 may also regulate extracellular matrix accumulation via post-translational regulation. In conclusion, the present data demonstrate that the A3AR antagonist, LJ-1888, blocked the development and attenuated the progression of renal fibrosis, and they suggest that LJ-1888 may become a new therapeutic modality for renal interstitial fibrosis.


Assuntos
Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Adenosina/uso terapêutico , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Túbulos Renais Proximais/patologia , Receptor A3 de Adenosina/metabolismo , Tiofenos/uso terapêutico , Obstrução Ureteral/complicações , Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/administração & dosagem , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Nefropatias/enzimologia , Nefropatias/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Tiofenos/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Obstrução Ureteral/enzimologia , Obstrução Ureteral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA