RESUMO
Vertical stratification and host tree species are factors with a high influence on the structure of communities of xylobiont beetles. However, little is known about how this influence varies between common and rare species. Based on estimated species richness, we compared alpha and beta diversity patterns of common and rare species in the canopy of the Leipzig floodplain forest to assess their response to vertical stratification and tree species. We used two measures of rarity: threat level in red lists and abundance based on octaves. The understory displayed a significantly higher number of common species than the canopy strata. Conversely, the canopy strata harbored a higher number of rare species. Turnover was always dominant over richness differences in beta diversity partitions. Using Raup-Crick null models and non-metric multidimensional scaling, we found that the vertical strata accounted for 19% of the overall beta diversity of common species and for 15% of the overall beta diversity of rare species. The tree species accounted for 7% of the overall beta diversity of the common species and 3% of the beta diversity of the rare species. Our results indicate that studies carried out in the understory alone do not allow drawing conclusions regarding the biodiversity in the canopy strata, and thus regarding the overall community structure of xylobiont beetles in the canopy.
RESUMO
Species richness is a frequently used measure of biodiversity. The compilation of a complete species list is an often unattainable goal. Estimators of species richness have been developed to overcome this problem. While the use of these estimators is becoming increasingly popular, working with the observed number of species is still common practice.To assess whether patterns of beetle communities based on observed numbers may be compared among each other, we compared patterns from observed and estimated numbers of species for beetle communities in the canopy of the Leipzig floodplain forest. These patterns were species richness and the number of shared species among three tree species and two canopy strata.We tested the applicability of the asymptotic Chao1 estimator and the estimate provided by the nonasymptotic rarefaction-extrapolation method for all tree species and both upper canopy and lower canopy. In the majority of cases, the ranking patterns of species richness for host tree species and strata were the same for the observed and estimated number of species. The ranking patterns of the number of species shared among host tree species and strata, however, were significantly different between observed and estimated values.Our results indicate that the observed number of species under-represents species richness and the number of shared species. However, ranking comparisons of published patterns based on the number of observed species may be acceptable for species richness but likely not reliable for the number of shared species. Further studies are needed to corroborate this conclusion. We encourage to use estimators and to provide open access to data to allow comparative assessments.