Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7695, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227583

RESUMO

Neoadjuvant immune checkpoint blockade (ICB) has shown unprecedented activity in mismatch repair deficient (MMRd) colorectal cancers, but its effectiveness in MMRd endometrial cancer (EC) remains unknown. In this investigator-driven, phase I, feasibility study (NCT04262089), 10 women with MMRd EC of any grade, planned for primary surgery, received two cycles of neoadjuvant pembrolizumab (200 mg IV) every three weeks. A pathologic response (primary objective) was observed in 5/10 patients, with 2 patients showing a major pathologic response. No patient achieved a complete pathologic response. A partial radiologic response (secondary objective) was observed in 3/10 patients, 5/10 patients had stable disease and 2/10 patients were non-evaluable on magnetic resonance imaging. All patients completed treatment without severe toxicity (exploratory objective). At median duration of follow-up of 22.5 months, two non-responders experienced disease recurrence. In-depth analysis of the loco-regional and systemic immune response (predefined exploratory objective) showed that monoclonal T cell expansion significantly correlated with treatment response. Tumour-draining lymph nodes displayed clonal overlap with intra-tumoural T cell expansion. All pre-specified endpoints, efficacy in terms of pathologic response as primary endpoint, radiologic response as secondary outcome and safety and tolerability as exploratory endpoint, were reached. Neoadjuvant ICB with pembrolizumab proved safe and induced pathologic, radiologic, and immunologic responses in MMRd EC, warranting further exploration of extended neoadjuvant treatment.


Assuntos
Anticorpos Monoclonais Humanizados , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio , Inibidores de Checkpoint Imunológico , Terapia Neoadjuvante , Humanos , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/diagnóstico por imagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , Adulto , Resultado do Tratamento
2.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608805

RESUMO

Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singlet­oxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.


Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Azul de Metileno/metabolismo , Azul de Metileno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA