Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 46(9): 4649-4661, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29294068

RESUMO

The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein-protein and protein-DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom transposases.


Assuntos
Elementos de DNA Transponíveis , Transposases/genética , Transposases/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Engenharia Genética , Genoma , Camundongos , Modelos Moleculares , Mutação , Transposases/química , Transposases/isolamento & purificação
2.
Mol Genet Genomics ; 291(3): 1181-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26847688

RESUMO

Transposons provide useful tools for genetics and genomics studies, as they can be modified easily for a variety of purposes. In this study, a strategy to clone circular DNA was developed on the basis of an efficient Mu in vitro transposition reaction catalyzed by MuA transposase. The transposon used contains a selectable marker as well as an origin of replication, and in vitro integration of the transposon into circular DNA generates a plasmid that can replicate in E. coli. We show that the substrate stoichiometry plays an important role in the profile of intermolecular versus intramolecular transposition reaction products. Increasing the relative amount of target DNA reduced the frequency of intramolecular products that are non-productive with regard to the developed cloning application. Such autointegration was also reduced in the reactions containing phage Mu-encoded MuB, indicating that this protein can be used for cloning in combination with MuA, and it is particularly useful with a limited amount of target DNA. The developed strategy can now be utilized to clone DNA circles regardless of their origin as long as their size is not prohibitive for transformation.


Assuntos
Clonagem Molecular/métodos , Elementos de DNA Transponíveis , DNA Circular , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Transposases/metabolismo , Proteínas Virais/metabolismo , Bacteriófago mu/enzimologia , Replicação do DNA , Técnicas In Vitro , Plasmídeos/genética
3.
Plasmid ; 86: 46-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27387339

RESUMO

Mu transposition-based cloning of DNA circles employs in vitro transposition reaction to deliver both the plasmid origin of replication and a selectable marker into the target DNA of interest. We report here the construction of a platform for the purpose that contains ten mini-Mu transposons with five different replication origins, enabling a variety of research approaches for the discovery and study of circular DNA. We also demonstrate that the simultaneous use of two transposons, one with the origin of replication and the other with selectable marker, is beneficial as it improves the cloning efficiency by reducing the fraction of autointegration-derived plasmid clones. The constructed transposons now provide a set of new tools for the studies on DNA circles and widen the applicability of Mu transposition based approaches to clone circular DNA from various sources.


Assuntos
Clonagem Molecular/métodos , Elementos de DNA Transponíveis/genética , DNA Circular/genética , Transposases/metabolismo , Escherichia coli/genética , Origem de Replicação/genética
4.
Mol Phylogenet Evol ; 78: 271-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24882428

RESUMO

Polintons are a recently discovered group of large transposable elements (<40Kb in size) encoding up to 10 different proteins. The increasing number of genome sequencing projects has led to the discovery of these elements in genomes of protists, fungi, and animals, but not in plants. The RepBase database of eukaryotic repetitive elements currently contains consensus sequences and information of 70 Polinton elements from 28 organisms. Previous phylogenetic analyses have shown the relationship of Polintons to linear plasmids, bacteriophages, and retroviruses. However, a comprehensive phylogenetic analysis of all known Polintons has been lacking. We retrieved the Polinton consensus sequences from the most recent version of RepBase, and compiled amino acid sequences for the two most common Polinton-specific genes, the DNA polymerase-B and retroviral-like integrase. Open reading frame predictions and homology comparisons revealed partial or full sequences for 54 polymerases and 55 Polinton integrases. Multiple sequence alignments portrayed conservation in several functional motifs of these proteins. Phylogenetic analyses based on Bayesian inference using single- and combined-gene datasets revealed seven distinct lineages of Polintons that broadly follow the tree of life. Two of the seven lineages are found within the same species, indicating that ancient divergences have been retained to this day.


Assuntos
Elementos de DNA Transponíveis , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Sequência Consenso , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Integrases/química , Integrases/classificação , Integrases/genética , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência
5.
Exp Cell Res ; 316(9): 1610-24, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20034489

RESUMO

Interaction between key signaling mechanisms is important to generate the diversity in signaling output required for proper control of cellular differentiation and function, although the molecular manifestations of such cross-talk are only partially understood. Notch signaling and the cellular response to hypoxia intersect at different points in the signaling cascades, and in this report we analyze the consequences of this cross-talk at the transcriptome level. Mouse ES cells were subjected to various combinations of hypoxia and/or activated Notch signaling, and the transcriptome changes could be grouped into different categories, reflecting various modes of hypoxia and Notch signaling integration. Two principal categories of novel Notch- and hypoxia-induced genes were identified: (i) a larger set of Notch or hypoxic target genes which were induced by one pathway and not significantly affected by the activity status of the other pathway and (ii) a smaller set of genes co-regulated by Notch and hypoxia. In the latter category, we identified genes that were induced by hypoxia and the expression of which was enhanced by active Notch signaling and another group of genes that were induced by Notch and hypoxia independently. Several of the hypoxia- and Notch-induced genes were found to be upregulated in various forms of cancer. Identification of genes co-regulated by the two pathways may provide a molecular platform to better understand the intersection between the two signaling cascades in normal development and cancer.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Hipóxia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células-Tronco Embrionárias/citologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida
6.
Methods Mol Biol ; 1681: 279-286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29134602

RESUMO

The capacity of transposable elements to insert into the genomes has been harnessed during the past decades to various in vitro and in vivo applications. This chapter describes in detail the general protocols and principles applicable for the Mu in vitro transposition reaction as well as the assembly of DNA transposition complexes that can be electroporated into bacterial cells to accomplish efficient gene delivery. These techniques with their modifications potentiate various gene and genome modification applications, which are discussed briefly here, and the reader is referred to the original publications for further details.


Assuntos
Bacteriófago mu/genética , Elementos de DNA Transponíveis/genética , DNA Viral/metabolismo , Eletroporação/métodos , Genoma Viral , Genômica/métodos , Escherichia coli/metabolismo
7.
Oncotarget ; 9(57): 31018-31031, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30123424

RESUMO

Ewing sarcoma (EwS) is an aggressive pediatric bone cancer in need of more effective therapies than currently available. Most research into novel targeted therapeutic approaches is focused on the fusion oncogene EWSR1-FLI1, which is the genetic hallmark of this disease. In this study, a broad range of 3,325 experimental compounds, among them FDA approved drugs and natural products, were screened for their effect on EwS cell viability depending on EWS-FLI1 expression. In a network-based approach we integrated the results from drug perturbation screens and RNA sequencing, comparing EWS-FLI1-high (normal expression) with EWS-FLI1-low (knockdown) conditions, revealing novel interactions between compounds and EWS-FLI1 associated biological processes. The top candidate list of druggable EWS-FLI1 targets included genes involved in translation, histone modification, microtubule structure, topoisomerase activity as well as apoptosis regulation. We confirmed our in silico results using viability and apoptosis assays, underlining the applicability of our integrative and systemic approach. We identified differential sensitivities of Ewing sarcoma cells to BCL-2 family inhibitors dependent on the EWS-FLI1 regulome including altered MCL-1 expression and subcellular localization. This study facilitates the selection of effective targeted approaches for future combinatorial therapies of patients suffering from Ewing sarcoma.

8.
Gene ; 596: 137-146, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27760381

RESUMO

A translocation leading to the formation of an oncogenic EWS-ETS fusion protein defines Ewing sarcoma. The most frequent gene fusion, present in 85 percent of Ewing sarcomas, is EWS-FLI1. Here, a high-throughput RNA interference screen was performed to identify genes whose function is critical for EWS-FLI1 driven cell viability. In total, 6781 genes were targeted by siRNA molecules and the screen was performed both in presence and absence of doxycycline-inducible expression of the EWS-FLI1 shRNA in A673/TR/shEF Ewing sarcoma cells. The Leucine rich repeats and WD repeat Domain containing 1 (LRWD1) targeting siRNA pool was the strongest hit reducing cell viability only in EWS-FLI1 expressing Ewing sarcoma cells. LRWD1 had been previously described as a testis specific gene with only limited information on its function. Analysis of LRWD1 mRNA levels in patient samples indicated that high expression associated with poor overall survival in Ewing sarcoma. Gene ontology analysis of LRWD1 co-expressed genes in Ewing tumors revealed association with DNA replication and analysis of differentially expressed genes in LRWD1 depleted Ewing sarcoma cells indicated a role in connective tissue development and cellular morphogenesis. Moreover, EWS-FLI1 repressed genes with repressive H3K27me3 chromatin marks were highly enriched among LRWD1 target genes in A673/TR/shEF Ewing sarcoma cells, suggesting that LRWD1 contributes to EWS-FLI1 driven transcriptional regulation. Taken together, we have identified LRWD1 as a novel regulator of EWS-FLI1 driven cell viability in A673/TR/shEF Ewing sarcoma cells, shown association between high LRWD1 mRNA expression and aggressive disease and identified processes by which LRWD1 may promote oncogenesis in Ewing sarcoma.


Assuntos
Neoplasias Ósseas/genética , Proteínas dos Microtúbulos/genética , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Doxiciclina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Masculino , Proteínas dos Microtúbulos/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Interferência de RNA , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/mortalidade , Sarcoma de Ewing/patologia , Repetições WD40
9.
Oncotarget ; 7(37): 60310-60331, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27531891

RESUMO

Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/ß-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by ß-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and ß-catenin signalling, which repress normal ß-catenin mediated transcriptional regulation. A ß-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This ß-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/ß-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Humanos , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteômica/métodos , Pirimidinonas/farmacologia , Interferência de RNA , Análise de Sobrevida , Tretinoína/farmacologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
10.
Oncotarget ; 6(41): 43182-201, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26673823

RESUMO

Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners.Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified ß-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.


Assuntos
Genes myc/fisiologia , Neuroblastoma/genética , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Western Blotting , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteômica/métodos , Transdução de Sinais/fisiologia
11.
Mob Genet Elements ; 4(5): 1-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26442171

RESUMO

Transposon-based technologies have many applications in molecular biology and can be used for gene delivery into prokaryotic and eukaryotic cells. Common transpositional activity measurement assays suitable for many types of transposons would be beneficial, as diverse transposon systems could be compared for their performance attributes. Therefore, we developed a general-purpose assay to enable and standardize the activity measurement for DNA transposition complexes (transpososomes), using phage Mu transposition as a test platform. This assay quantifies transpositional recombination efficiency and is based on an in vitro transposition reaction with a target plasmid carrying a lethal ccdB gene. If transposition targets ccdB, this gene becomes inactivated, enabling plasmid-receiving Escherichia coli cells to survive and to be scored as colonies on selection plates. The assay was validated with 3 mini-Mu transposons varying in size and differing in their marker gene constitution. Tests with different amounts of transposon DNA provided a linear response and yielded a 10-fold operational range for the assay. The colony formation capacity was linearly correlated with the competence status of the E.coli cells, enabling normalization of experimental data obtained with different batches of recipient cells. The developed assay can now be used to directly compare transpososome activities with all types of mini-Mu transposons, regardless of their aimed use. Furthermore, the assay should be directly applicable to other transposition-based systems with a functional in vitro reaction, and it provides a dependable quality control measure that previously has been lacking but is highly important for the evaluation of current and emerging transposon-based applications.

12.
PLoS One ; 8(4): e60930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577178

RESUMO

Cancer initiation and progression involve microRNAs that can function like tumor suppressors and oncogenes. The functional significance of most miRNAs is currently unknown. To determine systematically which microRNAs are essential for glioma growth, we screened a precursor microRNA library in three human glioblastoma and one astroglial cell line model systems. The most prominent and consistent cell proliferation-reducing hits were validated in secondary screening with an additional apoptosis endpoint. The functional screening data were integrated in the miRNA expression data to find underexpressed true functional tumor suppressor miRNAs. In addition, we used miRNA-target gene predictions and combined siRNA functional screening data to find the most probable miRNA-target gene pairs with a similar functional effect on proliferation. Nine novel functional miRNAs (hsa-miR-129, -136, -145, -155, -181b, -342-5p, -342-3p, -376a/b) in GBM cell lines were validated for their importance in glioma cell growth, and similar effects for six target genes (ROCK1, RHOA, MET, CSF1R, EIF2AK1, FGF7) of these miRNAs were shown functionally. The clinical significance of the functional hits was validated in miRNA expression data from the TCGA glioblastoma multiforme (GBM) tumor cohort. Five tumor suppressor miRNAs (hsa-miR-136, -145, -342, -129, -376a) showed significant underexpression in clinical GBM tumor samples from the TCGA GBM cohort further supporting the role of these miRNAs in vivo. Most importantly, higher hsa-miR-145 expression in GBM tumors yielded significantly better survival (p<0.005) in a subset of patients thus validating it as a genuine tumor suppressor miRNA. This systematic functional profiling provides important new knowledge about functionally relevant miRNAs in GBM biology and may offer new targets for treating glioma.


Assuntos
Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Humanos , Células Neoplásicas Circulantes
13.
PLoS One ; 7(5): e37922, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666413

RESUMO

MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIß, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIß were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.


Assuntos
Biologia Computacional , Mutagênese , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transposases/química , Transposases/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Transposases/genética
14.
PLoS One ; 6(2): e17259, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21365010

RESUMO

BACKGROUND: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes'), a hallmark of potential oncogenes. METHODOLOGY: A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE: Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Análise em Microsséries/estatística & dados numéricos , Astrocitoma/genética , Neoplasias Encefálicas/genética , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Glioblastoma/genética , Humanos , Análise em Microsséries/métodos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Software , Células Tumorais Cultivadas
15.
Mob DNA ; 1(1): 24, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21110848

RESUMO

BACKGROUND: Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition. RESULTS: Here we developed a universal in vivo platform for the analysis of transposition frequency with class II mobile elements, i.e., DNA transposons. For each particular transposon system, cloning of the transposon ends and the cognate transposase gene, in three consecutive steps, generates a multifunctional plasmid, which drives inducible expression of the transposase gene and includes a mobilisable lacZ-containing reporter transposon. The assay scores transposition events as blue microcolonies, papillae, growing within otherwise whitish Escherichia coli colonies on indicator plates. We developed the assay using phage Mu transposition as a test model and validated the platform using various MuA transposase mutants. For further validation and to illustrate universality, we introduced IS903 transposition system components into the assay. The developed assay is adjustable to a desired level of initial transposition via the control of a plasmid-borne E. coli arabinose promoter. In practice, the transposition frequency is modulated by varying the concentration of arabinose or glucose in the growth medium. We show that variable levels of transpositional activity can be analysed, thus enabling straightforward screens for hyper- or hypoactive transposase mutants, regardless of the original wild-type activity level. CONCLUSIONS: The established universal papillation assay platform should be widely applicable to a variety of mobile elements. It can be used for mechanistic studies to dissect transposition and provides a means to screen or scrutinise transposase mutants and genes encoding host factors. In succession, improved versions of transposition systems should yield better tools for molecular biology and offer versatile genome modification vehicles for many types of studies, including gene therapy and stem cell research.

16.
Genome Med ; 2(9): 65, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20822536

RESUMO

BACKGROUND: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed. METHODS: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available. RESULTS: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website. CONCLUSIONS: Our results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies.Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm/

17.
Genome Biol ; 9(9): R139, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18803840

RESUMO

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly context-specific. Here, we have developed a method for the comparison of mRNA expression levels of most human genes across 9,783 Affymetrix gene expression array experiments representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database of gene expression patterns in normal human tissues and pathological conditions covers 113 million datapoints and is available from the GeneSapiens website.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bases de Dados Genéticas , Doença/genética , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos
18.
J Biol Chem ; 277(4): 2843-51, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11700310

RESUMO

The Mu transpositional DNA recombination machinery selects target sites by assembling a protein-DNA complex that interacts with the target DNA and reacts whenever it locates a favorable sequence composition. Splicing of a transposon into the target generates a 5-bp duplication that reflects the original target site. Preferential usage of different target pentamers was examined with a minimal Mu in vitro system and quantitatively compiled consensus sequences for the most preferred and the least preferred sites were generated. When analyzed as base steps, preferences toward certain steps along the 5-bp target site were detected. We further show that insertion sites can be predicted on the basis of additively calculated base step values. Also surrounding sequences influence the preference of a given pentamer; a symmetrical structural component was revealed, suggesting potential hinges at and around the target site.


Assuntos
Bacteriófago mu/genética , Bacteriófago mu/metabolismo , Recombinação Genética , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/genética , Elementos de DNA Transponíveis , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA