Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 74(10): 1489-1497, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665264

RESUMO

OBJECTIVES: There is a requirement within ear therapeutics for a delivery system capable of safely delivering controlled doses to the inner ear. However, the anatomy and sensitivity of the inner ear make current delivery systems problematic and often ineffective. Therefore, a new delivery system is required to overcome these issues and provide a more efficacious system in the treatment of inner ear disease. This study assesses the potential of 3D printing (3DP) as a fabrication method for an implantable drug delivery system (DDS) to the inner ear. KEY FINDINGS: Three implantable designs of varying geometry were produced with fused deposition modelling (FDM) 3DP, each loaded with 0.25%, 0.5% and 1% levofloxacin; filaments prepared by hot-melt extrusion. Each implant was effective in providing sustained, therapeutic release of levofloxacin for at least 4 days and as such would be effective in therapeutic treatment of many common inner ear diseases, such as otitis media or Ménière's disease. CONCLUSIONS: This proof-of-concept research was successful in utilising FDM as a fabrication method for a DDS capable of providing prolonged release directly to the inner ear and highlights the viability of 3DP in the fabrication of an inner ear DDS.


Assuntos
Orelha Interna , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Levofloxacino , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA