RESUMO
Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.
Assuntos
Bulbo Olfatório , Órgão Vomeronasal , Camundongos , Animais , Bulbo Olfatório/fisiologia , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismoRESUMO
Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.
Assuntos
Proteínas/química , Receptores de Feromônios/química , Atrativos Sexuais/química , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Relação Estrutura-AtividadeRESUMO
Animals have the innate ability to select optimal defensive behavioral outputs with an appropriate intensity in response to predator threat in specific contexts. Such innate behavioral decisions are thought to be computed in the medial hypothalamic nuclei that contain neural populations directly controlling defensive behavioral outputs. The vomeronasal organ (VNO) is one of the major sensory input channels through which predator cues are detected with ascending inputs to the medial hypothalamic nuclei, especially to the ventromedial hypothalamus (VMH), through the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST). Here, we show that cat saliva contains predator cues that signal imminence of predator threat and regulate the robustness of freezing behavior through the VNO in mice. Cat saliva activates neurons expressing the V2R-A4 subfamily of sensory receptors, suggesting the existence of specific receptor groups responsible for freezing behavior induced by the predator cues. The number of VNO neurons activated in response to saliva correlates with the freshness of saliva and the intensity of freezing behavior, while the downstream neurons in the accessory olfactory bulb (AOB) and defensive behavioral circuit are quantitatively equally activated by fresh and old saliva. Strikingly, however, only the number of VMH neurons activated by fresh saliva positively correlates with the intensity of freezing behavior. Detailed analysis of the spatial distribution of fresh and old saliva-responding neurons revealed a neuronal population within the VMH that is more sensitive to fresh saliva than old saliva. Taken together, this study demonstrates that predator cues in cat saliva change over time and differentially activate the sensory-to-hypothalamus defensive behavioral pathway to modulate behavioral outputs.
RESUMO
Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.
RESUMO
Animals have the innate ability to select optimal defensive behaviors with appropriate intensity within specific contexts. The vomeronasal organ (VNO) serves as a primary sensory channel for detecting predator cues by relaying signals to the medial hypothalamic nuclei, particularly the ventromedial hypothalamus (VMH), which directly controls defensive behavioral outputs. Here, we demonstrate that cat saliva contains predator cues that signal the imminence of predator threat and modulate the intensity of freezing behavior through the VNO in mice. Cat saliva activates VNO neurons expressing the V2R-A4 subfamily of sensory receptors, and the number of VNO neurons activated in response to saliva correlates with both the freshness of saliva and the intensity of freezing behavior. Moreover, the number of VMH neurons activated by fresh, but not old, saliva positively correlates with the intensity of freezing behavior. Detailed analyses of the spatial distribution of activated neurons, as well as their overlap within the same individual mice, revealed that fresh and old saliva predominantly activate distinct neuronal populations within the VMH. Collectively, this study suggests that there is an accessory olfactory circuit in mice that is specifically tuned to time-sensitive components of cat saliva, which optimizes their defensive behavior to maximize their chance of survival according to the imminence of threat.
Assuntos
Comportamento Predatório , Saliva , Órgão Vomeronasal , Animais , Órgão Vomeronasal/fisiologia , Camundongos , Gatos , Comportamento Predatório/fisiologia , Masculino , Hipotálamo/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)RESUMO
Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.
Assuntos
Drosophila melanogaster , Histona Desacetilases , Humanos , Camundongos , Animais , Histona Desacetilases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Odorantes , Diacetil , Inibidores de Histona Desacetilases/farmacologia , Drosophila/genética , Sistema Nervoso/metabolismo , Expressão Gênica , AcetilaçãoRESUMO
Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.
Assuntos
Síndrome do Cromossomo X Frágil , Pró-Opiomelanocortina , Animais , Masculino , Camundongos , Peso Corporal , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Mutação , Obesidade/genética , Pró-Opiomelanocortina/metabolismoRESUMO
Eukaryotes are often exposed to microbes and respond to their secreted metabolites, such as the microbiome in animals or commensal bacteria in roots. Little is known about the effects of long-term exposure to volatile chemicals emitted by microbes, or other volatiles that we are exposed to over a long duration. Using the model system Drosophila melanogaster, we evaluate a yeast emitted volatile, diacetyl, found in high levels around fermenting fruits where they spend long periods of time. We find that exposure to just the headspace containing the volatile molecules can alter gene expression in the antenna. Experiments showed that diacetyl and structurally related volatile compounds inhibited human histone-deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused wide changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure causes modulation of gene expression in the brain, therefore has potential as a therapeutic. Using two separate disease models known to be responsive to HDAC-inhibitors, we evaluated physiological effects of volatile exposure. First, we find that the HDAC inhibitor also halts proliferation of a neuroblastoma cell line in culture as predicted. Next, exposure to vapors slows progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that unbeknown to us, certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression and physiology in animals.
RESUMO
The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.
Assuntos
Tonsila do Cerebelo/metabolismo , Biomarcadores/sangue , Hemoglobinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Feminino , Hemoglobinas/genética , Hibridização In Situ/métodos , Lactação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Globinas beta/genética , Globinas beta/metabolismoRESUMO
Steroid hormones control development and homeostasis in a wide variety of animals by interacting with intracellular nuclear receptors. Recent discoveries in the fruit fly Drosophila melanogaster revealed that insect steroid hormones or ecdysteroids are incorporated into cells through a membrane transporter named Ecdysone Importer (EcI), which may become a novel target for manipulating steroid hormone signaling in insects. In this study, we established an assay system that can rapidly assess EcI-mediated ecdysteroid entry into cultured cells. Using NanoLuc Binary Technology (NanoBiT), we first developed an assay to detect ligand-dependent heterodimerization of the ecdysone receptor (EcR) and retinoid X receptor (RXR) in human embryonic kidney (HEK) 293T cells. We also developed HEK293 cells that stably express EcI. By combining these tools, we can monitor ecdysteroid entry into the cells in real time, making it a reliable system to assess EcI-mediated steroid hormone incorporation into animal cells.
RESUMO
Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized that selective breeding for a voluntary behavior would enable us to identify novel roles of the chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4 independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We found that several sensory receptors in specific receptor clusters were differentially expressed between the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol. These results indicate that the VNO has become genetically differentiated between HR and Control lines during the selective breeding process. Although the role of the vomeronasal chemosensory receptors in VWR activity remains to be determined, the current results suggest that these vomeronasal chemosensory receptors are important quantitative trait loci for voluntary exercise in mice. We propose that olfaction may play an important role in motivation for voluntary exercise in mammals.
Assuntos
Comportamento Animal , Condicionamento Físico Animal , Órgão Vomeronasal/metabolismo , Animais , Feminino , Frequência do Gene , Loci Gênicos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
The brain neuromodulatory systems heavily influence behavioral and cognitive processes. Previous work has shown that norepinephrine (NE), a classic neuromodulator mainly derived from the locus coeruleus (LC), enhances neuronal responses to sensory stimuli. However, the role of the LC-NE system in modulating perceptual task performance is not well understood. In addition, systemic perturbation of NE signaling has often been proposed to specifically target the LC in functional studies, yet the assumption that localized (specific) and systemic (nonspecific) perturbations of LC-NE have the same behavioral impact remains largely untested. In this study, we trained mice to perform a head-fixed, quantitative tactile detection task, and administered an α2 adrenergic receptor agonist or antagonist to pharmacologically down- or up-regulate LC-NE activity, respectively. We addressed the outstanding question of how bidirectional perturbations of LC-NE activity affect tactile detection, and tested whether localized and systemic drug treatments exert the same behavioral effects. We found that both localized and systemic suppression of LC-NE impaired tactile detection by reducing motivation. Surprisingly, while locally activating LC-NE enabled mice to perform in a near-optimal regime, systemic activation impaired behavior by promoting impulsivity. Our results demonstrate that localized silencing and activation of LC-NE differentially affect tactile detection, and that localized and systemic NE activation induce distinct behavioral changes.
Assuntos
Neurônios Adrenérgicos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Antagonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Tato/fisiologia , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Clonidina/administração & dosagem , Feminino , Locus Cerúleo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tato/efeitos dos fármacos , Ioimbina/administração & dosagemRESUMO
Steroid hormones are a group of lipophilic hormones that are believed to enter cells by simple diffusion to regulate diverse physiological processes through intracellular nuclear receptors. Here, we challenge this model in Drosophila by demonstrating that Ecdysone Importer (EcI), a membrane transporter identified from two independent genetic screens, is involved in cellular uptake of the steroid hormone ecdysone. EcI encodes an organic anion transporting polypeptide of the evolutionarily conserved solute carrier organic anion superfamily. In vivo, EcI loss of function causes phenotypes indistinguishable from ecdysone- or ecdysone receptor (EcR)-deficient animals, and EcI knockdown inhibits cellular uptake of ecdysone. Furthermore, EcI regulates ecdysone signaling in a cell-autonomous manner and is both necessary and sufficient for inducing ecdysone-dependent gene expression in culture cells expressing EcR. Altogether, our results challenge the simple diffusion model for cellular uptake of ecdysone and may have wide implications for basic and medical aspects of steroid hormone studies.
Assuntos
Ecdisona/metabolismo , Receptores de Esteroides/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Esteroides/metabolismoRESUMO
The Bruce effect refers to pregnancy termination in recently pregnant female rodents upon exposure to unfamiliar males [1]. This event occurs in specific combinations of laboratory mouse strains via the vomeronasal system [2, 3]; however, the responsible chemosensory signals have not been fully identified. Here we demonstrate that the male pheromone exocrine gland-secreting peptide 1 (ESP1) is one of the key factors that causes pregnancy block. Female mice exhibited high pregnancy failure rates upon encountering males that secreted different levels of ESP1 compared to the mated male. The effect was not observed in mice that lacked the ESP1 receptor, V2Rp5, which is expressed in vomeronasal sensory neurons. Prolactin surges in the blood after mating, which are essential for maintaining luteal function, were suppressed by ESP1 exposure, suggesting that a neuroendocrine mechanism underlies ESP1-mediated pregnancy failure. The single peptide pheromone ESP1 conveys not only maleness to promote female receptivity but also the males' characteristics to facilitate memorization of the mating partner.
Assuntos
Feromônios/genética , Gravidez/fisiologia , Proteínas/genética , Órgão Vomeronasal/fisiologia , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Feromônios/metabolismo , Proteínas/metabolismoRESUMO
Exocrine gland-secreting peptide 1 (ESP1) released into male tear fluids is a male pheromone that stimulates sexually receptive behavior in female mice via the vomeronasal sensory system. ESP1 also induces c-Fos expression in male brain regions distinct from those in females. However, behavior in males following ESP1 exposure has not been examined. In the present study, we show that ESP1, in conjunction with unfamiliar male urine, enhances male aggression via the specific vomeronasal receptor V2Rp5. In addition, male mice that secrete ESP1 but lack V2Rp5 exhibit a lower level of aggressiveness than do mice that express V2Rp5. These results suggest that ESP1 not only acts as a male pheromone in both sexes but also serves as an auto-stimulatory factor that enhances male aggressiveness by self-exposure. Finally, re-activation of ESP1-induced c-Fos-positive neurons by using the designer receptor exclusively activated by designer drug (DREADD) approach resulted in enhancement of sexual and aggressive behaviors in female and male mice, respectively, indicating that sexually dimorphic activation in the brain is a neural basis for the sex-specific behavioral responses to ESP1.
Assuntos
Agressão/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas/farmacologia , Animais , Genes fos/genética , Genes fos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Proteínas/metabolismo , Lágrimas/químicaRESUMO
The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs.
RESUMO
A peptide or a small protein released from an exocrine gland or in urine is utilized as a chemosignal that elicits social or reproductive behavior in mice. Recently, we identified the male-specific peptide, exocrine gland-secreting peptide 1 (ESP1), in mouse tear fluids that enhanced female sexual receptive behavior, and determined the three dimensional structure. ESP1 appears to be a member of multigene family that consists of 38 genes in mice, which we call the ESP family. ESP4, a member of the ESP family, is expressed in various exocrine glands, and shows the highest sequence similarity with ESP1. Here, we report the NMR assignments of ESP4 which provides a basis for NMR analyses of this protein. Our results will give insight into structural relationships within the ESP family.
Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Animais , Isótopos de Carbono , Feminino , Hidrogênio , Masculino , Camundongos , Isótopos de Nitrogênio , Estrutura Secundária de ProteínaRESUMO
The mammalian vomeronasal organ encodes pheromone information about gender, reproductive status, genetic background and individual differences. It remains unknown how pheromone information interacts to trigger innate behaviors. In this study, we identify vomeronasal receptors responsible for detecting female pheromones. A sub-group of V1re clade members recognizes gender-identifying cues in female urine. Multiple members of the V1rj clade are cognate receptors for urinary estrus signals, as well as for sulfated estrogen (SE) compounds. In both cases, the same cue activates multiple homologous receptors, suggesting redundancy in encoding female pheromone cues. Neither gender-specific cues nor SEs alone are sufficient to promote courtship behavior in male mice, whereas robust courtship behavior can be induced when the two cues are applied together. Thus, integrated action of different female cues is required in pheromone-triggered mating behavior. These results suggest a gating mechanism in the vomeronasal circuit in promoting specific innate behavior.DOI: http://dx.doi.org/10.7554/eLife.03025.001.
Assuntos
Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Corte , Estrogênios/fisiologia , Estrogênios/urina , Estro/fisiologia , Estro/urina , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Receptores Olfatórios/fisiologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Feromônios/classificação , Receptores de Feromônios/genética , Receptores de Feromônios/fisiologia , Atrativos Sexuais/urina , Transdução de Sinais , Órgão Vomeronasal/fisiologiaRESUMO
Immediate early genes (IEGs) are powerful tools for visualizing activated neurons and extended circuits that are stimulated by sensory input. Several kinds of IEGs (e.g., c-fos, egr-1) have been utilized for detecting activated receptor neurons in the pheromone sensory organ called the vomeronasal organ (VNO), as well as for mapping the neurons within the central nervous system (CNS) excited by pheromones.In this chapter, we describe the procedure for the detection of pheromone-induced neural activation in the VNO and CNS using the c-Fos immunostaining technique.
Assuntos
Genes Precoces/genética , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Órgão Vomeronasal/inervação , Órgão Vomeronasal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Feminino , Camundongos , Bulbo Olfatório/fisiologia , Feromônios/metabolismo , Área Pré-Óptica/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Septais/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Órgão Vomeronasal/citologiaRESUMO
The vomeronasal organ (VNO) detects chemosensory signals that carry information about the social, sexual and reproductive status of the individuals within the same species. These intraspecies signals, the pheromones, as well as signals from some predators, activate the vomeronasal sensory neurons (VSNs) with high levels of specificity and sensitivity. At least three distinct families of G-protein coupled receptors, V1R, V2R and FPR, are expressed in VNO neurons to mediate the detection of the chemosensory cues. To understand how pheromone information is encoded by the VNO, it is critical to analyze the response profiles of individual VSNs to various stimuli and identify the specific receptors that mediate these responses. The neuroepithelia of VNO are enclosed in a pair of vomer bones. The semi-blind tubular structure of VNO has one open end (the vomeronasal duct) connecting to the nasal cavity. VSNs extend their dendrites to the lumen part of the VNO, where the pheromone cues are in contact with the receptors expressed at the dendritic knobs. The cell bodies of the VSNs form pseudo-stratified layers with V1R and V2R expressed in the apical and basal layers respectively. Several techniques have been utilized to monitor responses of VSNs to sensory stimuli. Among these techniques, acute slice preparation offers several advantages. First, compared to dissociated VSNs, slice preparations maintain the neurons in their native morphology and the dendrites of the cells stay relatively intact. Second, the cell bodies of the VSNs are easily accessible in coronal slice of the VNO to allow electrophysiology studies and imaging experiments as compared to whole epithelium and whole-mount preparations. Third, this method can be combined with molecular cloning techniques to allow receptor identification. Sensory stimulation elicits strong Ca2+ influx in VSNs that is indicative of receptor activation. We thus develop transgenic mice that express G-CaMP2 in the olfactory sensory neurons, including the VSNs. The sensitivity and the genetic nature of the probe greatly facilitate Ca2+ imaging experiments. This method has eliminated the dye loading process used in previous studies. We also employ a ligand delivery system that enables application of various stimuli to the VNO slices. The combination of the two techniques allows us to monitor multiple neurons simultaneously in response to large numbers of stimuli. Finally, we have established a semi-automated analysis pipeline to assist image processing.