Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
2.
Immunol Cell Biol ; 102(3): 211-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288547

RESUMO

CD4+ forkhead box P3 (FOXP3)+ regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell-suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions in vitro.


Assuntos
Terapia de Imunossupressão , Linfócitos T Reguladores , Humanos , Linhagem Celular , Tolerância Imunológica , Fatores de Transcrição Forkhead/metabolismo
3.
Physiol Genomics ; 55(4): 168-178, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878491

RESUMO

Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caspase 3/uso terapêutico , Células Endoteliais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L700-L711, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976920

RESUMO

We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apoptose , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
5.
Mol Cell Neurosci ; 123: 103790, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368428

RESUMO

Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and ß-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and ß-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.


Assuntos
Proteínas de Caenorhabditis elegans , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
6.
PLoS Genet ; 16(10): e1009052, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064774

RESUMO

Ciliary microtubules are subject to post-translational modifications that act as a "Tubulin Code" to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5(my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in the ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4(my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Carboxipeptidases/genética , Degeneração Neural/genética , Peptídeo Sintases/genética , Tubulina (Proteína)/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Transporte/genética , Cílios/genética , Cílios/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/genética , Mutação/genética , Quinases Relacionadas a NIMA/genética , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional/genética
7.
Am J Respir Cell Mol Biol ; 66(6): 671-681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358404

RESUMO

Bacterial pneumonia induces the rapid recruitment and activation of neutrophils and macrophages into the lung, and these cells contribute to bacterial clearance and other defense functions. TBK1 (TANK-binding kinase 1) performs many functions, including activation of the type I IFN pathway and regulation of autophagy and mitophagy, but its contribution to antibacterial defenses in the lung is unclear. We previously showed that lung neutrophils upregulate mRNAs for TBK1 and its accessory proteins during Streptococcus pneumoniae pneumonia, despite low or absent expression of type I IFN in these cells. We hypothesized that TBK1 performs key antibacterial functions in pneumonia apart from type I IFN expression. Using TBK1 null mice, we show that TBK1 contributes to antibacterial defenses and promotes bacterial clearance and survival. TBK1 null mice express lower concentrations of many cytokines in the infected lung. Conditional deletion of TBK1 with LysMCre results in TBK1 deletion from macrophages but not neutrophils. LysMCre TBK1 mice have no defect in cytokine expression, implicating a nonmacrophage cell type as a key TBK1-dependent cell. TBK1 null neutrophils have no defect in recruitment to the infected lung but show impaired activation of p65/NF-κB and STAT1 and lower expression of reactive oxygen species, IFNγ, and IL12p40. TLR1/2 and 4 agonists each induce phosphorylation of TBK1 in neutrophils. Surprisingly, neutrophil TBK1 activation in vivo does not require the adaptor STING. Thus, TBK1 is a critical component of STING-independent antibacterial responses in the lung, and TBK1 is necessary for multiple neutrophil functions.


Assuntos
Interferon Tipo I , Pneumonia Pneumocócica , Proteínas Serina-Treonina Quinases , Streptococcus pneumoniae , Animais , Citocinas/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais , Streptococcus pneumoniae/imunologia
8.
J Clin Microbiol ; 60(3): e0128821, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-34985985

RESUMO

Genomic sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to provide valuable insight into the ever-changing variant makeup of the COVID-19 pandemic. More than three million SARS-CoV-2 genome sequences have been deposited in Global Initiative on Sharing All Influenza Data (GISAID), but contributions from the United States, particularly through 2020, lagged the global effort. The primary goal of clinical microbiology laboratories is seldom rooted in epidemiologic or public health testing, and many laboratories do not contain in-house sequencing technology. However, we recognized the need for clinical microbiologists to lend expertise, share specimen resources, and partner with academic laboratories and sequencing cores to assist in SARS-CoV-2 epidemiologic sequencing efforts. Here, we describe two clinical and academic laboratory collaborations for SARS-CoV-2 genomic sequencing. We highlight roles of the clinical microbiologists and the academic laboratories, outline best practices, describe two divergent strategies in accomplishing a similar goal, and discuss the challenges with implementing and maintaining such programs.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Laboratórios , Pandemias , SARS-CoV-2/genética
9.
J Headache Pain ; 22(1): 9, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663369

RESUMO

INTRODUCTION: Idiopatic trigeminal neuralgia purely paroxysmal (ITNp) distributed in the supraorbital and suprathrochlear dermatomes (SSd), refractory to conventional treatments have been linked to the hyperactivity of the corrugator supercilii muscle (CSM). In these patients, the inactivation of the CSM via botulinum toxin type A (BTA) injections has been proven to be safe and effective in reducing migraine burden. The main limitation of BTA is the need of repetitive injections and relative high costs. Based on the study of the motor innervation of the CSM, we describe here an alternative approach to improve these type of migraines, based on a minimally invasive denervation of the CSM. MATERIALS AND METHODS: Motor innervation and feasibility of selective CSM denervation was first studied on fresh frozen cadavers. Once the technique was safely established, 15 patients were enrolled. To be considered eligible, patients had to meet the following criteria: positive response to BTA treatment, migraine disability assessment score > 24, > 15 migraine days/month, no occipital/temporal trigger points and plausible reasons to discontinue BTA treatment. Pre- and post- operative migraine headache index (MHI) were compared, and complications were classified following the Clavien-Dindo classification (CDC). RESULTS: Fifteen patients (9 females and 6 males) underwent the described surgical procedure. The mean age was 41 ± 10 years. Migraine headache episodes decreased from 24 ± 4 day/month to 2 ± 2 (p < 0.001) The MHI decreased from 208 ± 35 to 10 ± 11 (p < 0.001). One patient (7%) had a grade I complication according to the CDC. No patient needed a second operative procedure. CONCLUSIONS: Our findings suggest that the selective CSM denervation represents a safe and minimally invasive approach to improve ITNp distributed in the SSd associated with CSM hyperactivation. TRIAL REGISTRATION: The data collection was conducted as a retrospective quality assessment study and all procedures were performed in accordance with the ethical standards of the national research committee and the 1964 Helsinki Declaration and its later amendments.


Assuntos
Toxinas Botulínicas Tipo A , Neuralgia do Trigêmeo , Adulto , Denervação , Músculos Faciais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Neuralgia do Trigêmeo/cirurgia
10.
J Transl Med ; 18(1): 427, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176790

RESUMO

BACKGROUND: Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. METHODS: We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48-96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. RESULTS: The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. CONCLUSION: Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.


Assuntos
Síndrome do Desconforto Respiratório , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Humanos , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , Linfócitos T Reguladores
11.
Am J Respir Cell Mol Biol ; 60(3): 335-345, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290124

RESUMO

Macrophages provide key elements of the host response to influenza A virus (IAV) infection, including expression of type I IFN and inflammatory cytokines and chemokines. TBK1 (TNF receptor-associated factor family member-associated NF-κB activator-binding kinase 1) contributes to IFN expression and antiviral responses in some cell types, but its role in the innate response to IAV in vivo is unknown. We hypothesized that macrophage TBK1 contributes to both IFN and non-IFN components of host defense and IAV pathology. We generated myeloid-conditional TBK1 knockout mice and assessed the in vitro and in vivo consequences of IAV infection. Myeloid-specific loss of TBK1 in vivo resulted in less severe host response to IAV, as assessed by decreased mortality, weight loss, and hypoxia and less inflammatory changes in BAL fluid relative to wild-type mice despite no differences in viral load. Mice lacking myeloid TBK1 showed less recruitment of CD64+SiglecF-Ly6Chi inflammatory macrophages, less expression of inflammatory cytokines in the BAL fluid, and less expression of both IFN regulatory factor and NF-κB target genes in the lung. Analysis of sorted alveolar macrophages, inflammatory macrophages, and lung interstitial macrophages revealed that each subpopulation requires TBK1 for distinct components of the response to IAV infection. Our findings define roles for myeloid TBK1 in IAV-induced lung inflammation apart from IFN type I expression and point to myeloid TBK1 as a central and cell type-specific regulator of virus-induced lung damage.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Animais , Citocinas/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , NF-kappa B/imunologia , Pneumonia/metabolismo
12.
J Immunol ; 198(10): 3939-3948, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424242

RESUMO

CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas com Domínio T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Th1/fisiologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Interferon gama/biossíntese , Interferon gama/genética , Interferon gama/imunologia , Espectrometria de Massas/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Mutação , Fosforilação , Proteômica/métodos , Sirolimo/farmacologia , Proteínas com Domínio T/química , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Th1/imunologia , Células Th2/imunologia
13.
Folia Primatol (Basel) ; 90(5): 392-403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416069

RESUMO

Only a handful of primate taxa use ultrasonic vocalisations (those ≥20 kHz) to communicate. The extent and uses of ultrasonic communication remain poorly understood, potentially ranging from echolocation, advertisement of reproductive status and resource availability, social cohesion, to predator avoidance. Here, using active acoustics whereby the study subjects were observed throughout their activity period, we describe the first purely ultrasonic call from a strepsirrhine primate (family Lorisidae), recorded in a completely wild setting, and hypothesise about its function. We identified one type of ultrasonic call, the doublet click, from 14 Javan slow lorises (Nycticebus javanicus) produced by males and females of juvenile, subadult and adult ages within their social groups (n = 791, mean = 46.0 kHz). We ran quadratic discriminant function analysis, finding dominant frequency and doublet click duration as the key parameters for identifying individuals' sex and age. Significantly more vocalisations were produced during affiliative social behaviour, suggesting that the call serves a social cohesion function. Considering the range of other cryptic behaviours, including slow and silent locomotion, and the high degree of territoriality associated with venomous attacks on conspecifics, the call may also serve as a safety strategy, allowing family members to regulate distance from other slow lorises and to communicate cryptically whilst avoiding predators.


Assuntos
Lorisidae/fisiologia , Comportamento Social , Vocalização Animal , Acústica , Animais , Feminino , Indonésia , Masculino
15.
J Reconstr Microsurg ; 34(5): 315-320, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29396981

RESUMO

Thoracic outlet syndrome (TOS) is a cause of upper extremity and shoulder dysfunction. TOS can present with a wide range of symptoms due to compression of the brachial plexus or its branches during their passage through the cervicothoracobrachial region or scalene triangle. There are three types of TOS: arterial, venous, and neurogenic. Neurogenic TOS (nTOS) is by far the most frequent type and represents more than 95% of all cases. Historically, surgical intervention for all types of TOS has evolved based on the treatment for a vascular etiology and has typically included a first rib resection. Despite nTOS being by far the more common type, most previous interventions have not considered treatment via peripheral nerve decompression.We describe surgical treatment of nTOS, performed on an outpatient basis, which focuses on the surgical decompression of the structures associated with the scalene triangle in conjunction with release of the pectoralis minor insertion through limited incisions. The procedure avoids the morbidity associated with first rib resection and is successful in ameliorating nTOS symptoms. Further, we propose a nomenclature shift to scalene triangle syndrome (STS) to reflect the nerve and arterial compressions needing to be addressed.


Assuntos
Plexo Braquial/cirurgia , Descompressão Cirúrgica/métodos , Síndrome do Desfiladeiro Torácico/diagnóstico por imagem , Síndrome do Desfiladeiro Torácico/cirurgia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Medição da Dor , Posicionamento do Paciente/métodos , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 111(17): 6401-6, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733924

RESUMO

There is a need for new approaches for the control of influenza given the burden caused by annual seasonal outbreaks, the emergence of viruses with pandemic potential, and the development of resistance to current antiviral drugs. We show that multivalent biologics, engineered using carbohydrate-binding modules specific for sialic acid, mask the cell-surface receptor recognized by the influenza virus and protect mice from a lethal challenge with 2009 pandemic H1N1 influenza virus. The most promising biologic protects mice when given as a single 1-µg intranasal dose 7 d in advance of viral challenge. There also is sufficient virus replication to establish an immune response, potentially protecting the animal from future exposure to the virus. Furthermore, the biologics appear to stimulate inflammatory mediators, and this stimulation may contribute to their protective ability. Our results suggest that this host-targeted approach could provide a front-line prophylactic that has the potential to protect against any current and future influenza virus and possibly against other respiratory pathogens that use sialic acid as a receptor.


Assuntos
Influenza Humana/metabolismo , Influenza Humana/prevenção & controle , Engenharia de Proteínas , Receptores Virais/metabolismo , Animais , Peso Corporal , Quimiocinas/metabolismo , Cães , Humanos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida
17.
Semin Cell Dev Biol ; 33: 25-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24977333

RESUMO

The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Cílios/fisiologia , Canais de Cátion TRPP/fisiologia , Animais , Caenorhabditis elegans/citologia , Cinesinas/fisiologia , Masculino , Neurônios/metabolismo , Transporte Proteico , Comportamento Sexual Animal , Vesículas Transportadoras/metabolismo
19.
Aging Ment Health ; 18(6): 683-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24437736

RESUMO

OBJECTIVE: To investigate the effectiveness of recent social therapeutic interventions to reduce loneliness in older people. METHOD: To examine this matter, a literature review, using seven databases, was undertaken using search terms relating to the themes of ageing, loneliness and social support. A total of 17 relevant studies relating to loneliness interventions were analysed. RESULTS: Three studies reporting on new technologies and one on a group work intervention identified significant reductions in loneliness. CONCLUSION: Further research into interventions using new technologies to reduce loneliness in older people is recommended.


Assuntos
Envelhecimento , Solidão/psicologia , Apoio Social , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Plast Reconstr Surg ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589998

RESUMO

BACKGROUND: Although nerve decompression surgery is an effective treatment for refractory occipital neuralgia (ON), a proportion of patients experience recurrence of pain and undergo reoperation. This study analyzes the incidence, risk factors, and outcomes of reoperation following primary greater occipital nerve (GON) decompression. METHODS: 215 patients who underwent 399 primary GON decompressions were prospectively enrolled. Data included patient demographics, past medical and surgical history, reoperation rates, intraoperative findings, surgical technique, and postoperative outcomes in terms of pain frequency (days/month), duration (hours/day), intensity (scale 0-10), and migraine headache index (MHI). Bivariate analyses, univariable and multivariable logistic regression analysis was performed. RESULTS: 27 (6.8%) GON decompressions required reoperation with neurectomy at a median follow-up time of 15.5 months (9.8-40.5). Cervical spine disorders on imaging that did not warrant surgical intervention (OR, 4.88; 95% 1.61-14.79; p<0.01) and radiofrequency ablation (RFA) (OR, 4.20; 95% CI, 1.45-15.2; p<0.05) were significantly associated with higher rates of reoperation. At 12 months postoperatively, patients who underwent reoperation achieved similar mean reductions in pain frequency, duration, intensity and MHI, as compared to patients who underwent only primary decompression (p>0.05). CONCLUSION: Patients with ON who have a history of cervical spine disorders or RFA should be counseled that primary decompression has a higher risk of reoperation, but outcomes are ultimately comparable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA