Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 186: 42-51, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32758682

RESUMO

The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex plant material into nutrients for host metabolism, a process which also produces other by-products, such as methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as metaproteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples, precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence database that enables precise protein identification and quantification. This review focuses on the application of rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its metabolic functions. We present and discuss current methods in sample handling, protein extraction and data analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metaproteomics for accurate reconstruction of active microbial populations in the rumen.


Assuntos
Criação de Animais Domésticos/métodos , Microbioma Gastrointestinal/fisiologia , Metagenômica/métodos , Proteômica/métodos , Rúmen/microbiologia , Animais , Interações entre Hospedeiro e Microrganismos/fisiologia , Gado/microbiologia , Gado/fisiologia , Metagenoma , Locos de Características Quantitativas/fisiologia , Ruminantes/microbiologia , Ruminantes/fisiologia
2.
Adv Exp Med Biol ; 1073: 187-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236844

RESUMO

Meta-omic techniques have progressed rapidly in the past decade and are frequently used in microbial ecology to study microorganisms in their natural ecosystems independent from culture restrictions. Metaproteomics, in combination with metagenomics, enables quantitative assessment of expressed proteins and pathways from individual members of the consortium. Together, metaproteomics and metagenomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples. Here, we outline key aspects of sample preparation, database generation, and other methodological considerations that are required for successful quantitative metaproteomic analyses and we describe case studies on the integration with metagenomics for enhanced functional output.


Assuntos
Metagenômica , Consórcios Microbianos , Proteômica , Manejo de Espécimes/métodos , Proteínas
3.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815274

RESUMO

In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and ß-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE: Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the ß-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Consórcios Microbianos , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biocombustíveis , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Resíduos de Alimentos , Redes e Vias Metabólicas , Proteômica , Análise de Sequência de DNA
4.
ISME J ; 17(7): 1128-1140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169869

RESUMO

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Assuntos
Cilióforos , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Proteômica , Cilióforos/genética , Cilióforos/metabolismo , Ruminantes/metabolismo , Amido/metabolismo , Metano/metabolismo
5.
Annu Rev Anim Biosci ; 10: 177-201, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34941382

RESUMO

Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discussthe link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Crescimento e Desenvolvimento , Microbiota/genética
6.
ISME J ; 16(2): 580-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34489539

RESUMO

Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


Assuntos
Biocombustíveis , Óxido Nitroso , Agricultura , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Óxido Nitroso/metabolismo , Solo , Microbiologia do Solo
7.
Nat Microbiol ; 7(4): 556-569, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365790

RESUMO

Processed foods often include food additives such as xanthan gum, a complex polysaccharide with unique rheological properties, that has established widespread use as a stabilizer and thickening agent. Xanthan gum's chemical structure is distinct from those of host and dietary polysaccharides that are more commonly expected to transit the gastrointestinal tract, and little is known about its direct interaction with the gut microbiota, which plays a central role in digestion of other dietary fibre polysaccharides. Here we show that the ability to digest xanthan gum is common in human gut microbiomes from industrialized countries and appears contingent on a single uncultured bacterium in the family Ruminococcaceae. Our data reveal that this primary degrader cleaves the xanthan gum backbone before processing the released oligosaccharides using additional enzymes. Some individuals harbour Bacteroides intestinalis that is incapable of consuming polymeric xanthan gum but grows on oligosaccharide products generated by the Ruminococcaceae. Feeding xanthan gum to germfree mice colonized with a human microbiota containing the uncultured Ruminococcaceae supports the idea that the additive xanthan gum can drive expansion of the primary degrader Ruminococcaceae, along with exogenously introduced B. intestinalis. Our work demonstrates the existence of a potential xanthan gum food chain involving at least two members of different phyla of gut bacteria and provides an initial framework for understanding how widespread consumption of a recently introduced food additive influences human microbiomes.


Assuntos
Microbioma Gastrointestinal , Animais , Fibras na Dieta , Aditivos Alimentares , Humanos , Camundongos , Polissacarídeos Bacterianos
8.
ISME J ; 15(2): 421-434, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929206

RESUMO

The rumen harbors a complex microbial mixture of archaea, bacteria, protozoa, and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 h in nylon bags within the rumen of cannulated dairy cows. Across a gene catalog covering anaerobic rumen bacteria, fungi and viruses, a significant portion of the detected proteins originated from fungal populations. Intriguingly, the carbohydrate-active enzyme (CAZyme) profile suggested a domain-specific functional specialization, with bacterial populations primarily engaged in the degradation of hemicelluloses, whereas fungi were inferred to target recalcitrant cellulose structures via the detection of a number of endo- and exo-acting enzymes belonging to the glycoside hydrolase (GH) family 5, 6, 8, and 48. Notably, members of the GH48 family were amongst the highest abundant CAZymes and detected representatives from this family also included dockerin domains that are associated with fungal cellulosomes. A eukaryote-selected metatranscriptome further reinforced the contribution of uncultured fungi in the ruminal degradation of recalcitrant fibers. These findings elucidate the intricate networks of in situ recalcitrant fiber deconstruction, and importantly, suggest that the anaerobic rumen fungi contribute a specific set of CAZymes that complement the enzyme repertoire provided by the specialized plant cell wall degrading rumen bacteria.


Assuntos
Fungos/metabolismo , Proteoma , Rúmen/microbiologia , Anaerobiose , Animais , Bovinos , Feminino , Fungos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteoma/metabolismo , Rúmen/metabolismo
9.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911965

RESUMO

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Fezes/microbiologia , Proteômica/métodos , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Laboratórios , Espectrometria de Massas , Peptídeos/química , Fluxo de Trabalho
10.
Water Res ; 96: 246-54, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27060528

RESUMO

Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures.


Assuntos
Reatores Biológicos/microbiologia , Temperatura , Anaerobiose , Archaea , Metano
11.
Microb Genom ; 2(7): e000066, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-28348861

RESUMO

The faecal microbiota of muskoxen (n=3) pasturing on Ryøya (69° 33' N 18° 43' E), Norway, in late September was characterized using high-throughput sequencing of partial 16S rRNA gene regions. A total of 16 209 high-quality sequence reads from bacterial domains and 19 462 from archaea were generated. Preliminary taxonomic classifications of 806 bacterial operational taxonomic units (OTUs) resulted in 53.7-59.3 % of the total sequences being without designations beyond the family level. Firmicutes (70.7-81.1 % of the total sequences) and Bacteroidetes (16.8-25.3 %) constituted the two major bacterial phyla, with uncharacterized members within the family Ruminococcaceae (28.9-40.9 %) as the major phylotype. Multiple-library comparisons between muskoxen and other ruminants indicated a higher similarity for muskoxen faeces and reindeer caecum (P>0.05) and some samples from cattle faeces. The archaeal sequences clustered into 37 OTUs, with dominating phylotypes affiliated to the methane-producing genus Methanobrevibacter (80-92 % of the total sequences). UniFrac analysis demonstrated heterogeneity between muskoxen archaeal libraries and those from reindeer and roe deer (P=1.0e-02, Bonferroni corrected), but not with foregut fermenters. The high proportion of cellulose-degrading Ruminococcus-affiliated bacteria agrees with the ingestion of a highly fibrous diet. Further experiments are required to elucidate the role played by these novel bacteria in the digestion of this fibrous Artic diet eaten by muskoxen.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Fezes/microbiologia , Microbiota/fisiologia , Ruminantes/microbiologia , Animais , Archaea/classificação , Archaea/genética , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Dieta , Microbiota/genética , Noruega , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
PLoS One ; 11(5): e0155213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159387

RESUMO

Reindeer (Rangifer tarandus tarandus) are large Holarctic herbivores whose heterogeneous diet has led to the development of a unique gastrointestinal microbiota, essential for the digestion of arctic flora, which may include a large proportion of lichens during winter. Lichens are rich in plant secondary metabolites, which may affect members of the gut microbial consortium, such as the methane-producing methanogenic archaea. Little is known about the effect of lichen consumption on the rumen and cecum microbiotas and how this may affect methanogenesis in reindeer. Here, we examined the effects of dietary lichens on the reindeer gut microbiota, especially methanogens. Samples from the rumen and cecum were collected from two groups of reindeer, fed either lichens (Ld: n = 4), or a standard pelleted feed (Pd: n = 3). Microbial densities (methanogens, bacteria and protozoa) were quantified using quantitative real-time PCR and methanogen and bacterial diversities were determined by 454 pyrosequencing of the 16S rRNA genes. In general, the density of methanogens were not significantly affected (p>0.05) by the intake of lichens. Methanobrevibacter constituted the main archaeal genus (>95% of reads), with Mbr. thaueri CW as the dominant species in both groups of reindeer. Bacteria belonging to the uncharacterized Ruminococcaceae and the genus Prevotella were the dominant phylotypes in the rumen and cecum, in both diets (ranging between 16-38% total sequences). Bacteria belonging to the genus Ruminococcus (3.5% to 0.6%; p = 0.001) and uncharacterized phylotypes within the order Bacteroidales (8.4% to 1.3%; p = 0.027), were significantly decreased in the rumen of lichen-fed reindeer, but not in the cecum (p = 0.2 and p = 0.087, respectively). UniFrac-based analyses showed archaeal and bacterial libraries were significantly different between diets, in both the cecum and the rumen (vegan::Adonis: pseudo-F<0.05). Based upon previous literature, we suggest that the altered methanogen and bacterial profiles may account for expected lower methane emissions from lichen-fed reindeer.


Assuntos
Ceco/microbiologia , Dieta , Líquens , Metano/metabolismo , Microbiota , Rena/fisiologia , Rúmen/microbiologia , Animais , Archaea/genética , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Rena/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA