Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477538

RESUMO

The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/genética , Fatores de Transcrição/genética , Parede Celular/genética , Glicoproteínas/genética , Humanos , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Especificidade por Substrato , Ácidos Teicoicos/genética , Ácidos Teicoicos/metabolismo
2.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590345

RESUMO

Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.


Assuntos
Glicoconjugados/metabolismo , Piruvatos/metabolismo , Aciltransferases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Glicoconjugados/química , Piruvatos/química
3.
Glycobiology ; 28(3): 148-158, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309573

RESUMO

The Gram-positive lactic acid bacterium Lactobacillus buchneri CD034 is covered by a two-dimensional crystalline, glycoproteinaceous cell surface (S-) layer lattice. While lactobacilli are extensively exploited as cell surface display systems for applied purposes, questions about how they stick their cell wall together are remaining open. This also includes the identification of the S-layer cell wall ligand. In this study, lipoteichoic acid was isolated from the L. buchneri CD034 cell wall as a significant fraction of the bacterium's cell wall glycopolymers, structurally characterized and analyzed for its potential to mediate binding of the S-layer to the cell wall. Combined component analyses and 1D- and 2D-nuclear magnetic resonance spectroscopy (NMR) revealed the lipoteichoic acid to be composed of on average 31 glycerol-phosphate repeating units partially substituted with α-d-glucose, and with an α-d-Galp(1→2)-α-d-Glcp(1→3)-1,2-diacyl-sn-Gro glycolipid anchor. The specificity of binding between the L. buchneri CD034 S-layer protein and purified lipoteichoic acid as well as their interaction force of about 45 pN were obtained by single-molecule force spectroscopy; this value is in the range of typical ligand-receptor interactions. This study sheds light on a functional implication of Lactobacillus cell wall architecture by showing direct binding between lipoteichoic acid and the S-layer of L. buchneri CD034.


Assuntos
Lactobacillus/química , Lipopolissacarídeos/química , Glicoproteínas de Membrana/química , Ácidos Teicoicos/química , Sítios de Ligação , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética
4.
Front Microbiol ; 9: 1356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997588

RESUMO

Various mechanisms of protein cell surface display have evolved during bacterial evolution. Several Gram-positive bacteria employ S-layer homology (SLH) domain-mediated sorting of cell-surface proteins and concomitantly engage a pyruvylated secondary cell-wall polymer as a cell-wall ligand. Specifically, pyruvate ketal linked to ß-D-ManNAc is regarded as an indispensable epitope in this cell-surface display mechanism. That secondary cell wall polymer (SCWP) pyruvylation and SLH domain-containing proteins are functionally coupled is supported by the presence of an ortholog of the predicted pyruvyltransferase CsaB in bacterial genomes, such as those of Bacillus anthracis and Paenibacillus alvei. The P. alvei SCWP, consisting of pyruvylated disaccharide repeats [→4)-ß-D-GlcNAc-(1→3)-4,6-Pyr-ß-D-ManNAc-(1→] serves as a model to investigate the widely unexplored pyruvylation reaction. Here, we reconstituted the underlying enzymatic pathway in vitro in combination with synthesized compounds, used mass spectrometry, and nuclear magnetic resonance spectroscopy for product characterization, and found that CsaB-catalyzed pyruvylation of ß-D-ManNAc occurs at the stage of the lipid-linked repeat. We produced the P. alvei TagA (PAV_RS07420) and CsaB (PAV_RS07425) enzymes as recombinant, tagged proteins, and using a synthetic 11-phenoxyundecyl-diphosphoryl-α-GlcNAc acceptor, we uncovered that TagA is an inverting UDP-α-D-ManNAc:GlcNAc-lipid carrier transferase, and that CsaB is a pyruvyltransferase, with synthetic UDP-α-D-ManNAc and phosphoenolpyruvate serving as donor substrates. Next, to substitute for the UDP-α-D-ManNAc substrate, the recombinant UDP-GlcNAc-2-epimerase MnaA (PAV_RS07610) of P. alvei was included in this in vitro reconstitution system. When all three enzymes, their substrates and the lipid-linked GlcNAc primer were combined in a one-pot reaction, a lipid-linked SCWP repeat precursor analog was obtained. This work highlights the biochemical basis of SCWP biosynthesis and bacterial pyruvyl transfer.

5.
Nat Commun ; 9(1): 3120, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087354

RESUMO

Self-assembling protein surface (S-) layers are common cell envelope structures of prokaryotes and have critical roles from structural maintenance to virulence. S-layers of Gram-positive bacteria are often attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Here we present an in-depth characterization of this interaction, with co-crystal structures of the three consecutive SLH domains from the Paenibacillus alvei S-layer protein SpaA with defined SCWP ligands. The most highly conserved SLH domain residue SLH-Gly29 is shown to enable a peptide backbone flip essential for SCWP binding in both biophysical and cellular experiments. Furthermore, we find that a significant domain movement mediates binding by two different sites in the SLH domain trimer, which may allow anchoring readjustment to relieve S-layer strain caused by cell growth and division.


Assuntos
Parede Celular/química , Paenibacillus/citologia , Peptidoglicano/química , Motivos de Aminoácidos , Bacillus anthracis , Proliferação de Células , Dicroísmo Circular , Cristalização , Ligantes , Mutagênese , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA