RESUMO
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Sequências Reguladoras de Ácido NucleicoRESUMO
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
RESUMO
The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.
Assuntos
Imunidade Inata , Linfócitos , Diferenciação Celular , Linhagem da Célula , Epigênese Genética , Células-Tronco HematopoéticasRESUMO
The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.
Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Cromatina/metabolismo , Desoxirribonucleases/metabolismo , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição/metabolismoRESUMO
Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.
Assuntos
Proteínas Intrinsicamente Desordenadas/química , Receptores de Glucocorticoides/química , Fatores de Transcrição/química , Animais , Feminino , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.
Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Regulon , Animais , Linhagem da Célula , Células Cultivadas , Ilhas de CpG , Metilação de DNA , Técnicas Genéticas , Camundongos , Especificidade de Órgãos , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Assuntos
Glucocorticoides/farmacologia , Regiões Promotoras Genéticas , RNA/biossíntese , Receptores de Glucocorticoides/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos , Animais , Camundongos , RNA/genéticaRESUMO
Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."
Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores de Glucocorticoides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , TranscriptomaRESUMO
The glucocorticoid receptor (GR), like other eukaryotic transcription factors, regulates gene expression by interacting with chromatinized DNA response elements. Photobleaching experiments in living cells indicate that receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average. Here, we show that the binding of one receptor at the glucocorticoid response element (GRE) does not reduce the steady-state binding of another receptor variant to the same GRE. Mathematical simulations reproduce this noncompetitive state using short GR/GRE residency times and relatively long times between DNA binding events. At many genomic sites where GR binding causes increased chromatin accessibility, concurrent steady-state binding levels for the variant receptor are actually increased, a phenomenon termed assisted loading. Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.
Assuntos
Montagem e Desmontagem da Cromatina , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Vírus do Tumor Mamário do Camundongo , Camundongos , Modelos Biológicos , Método de Monte Carlo , Nucleossomos/metabolismo , Receptores de Estrogênio/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismoRESUMO
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Ligantes , Ligação Proteica , DimerizaçãoRESUMO
Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.
Assuntos
Corticosterona/farmacologia , Fígado/patologia , Receptores de Glucocorticoides/metabolismo , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Glucocorticoides/metabolismo , Fígado/metabolismo , Masculino , Periodicidade , Transporte Proteico/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/fisiologia , Ativação Transcricional/genética , Transcriptoma/genéticaRESUMO
Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.
Assuntos
Anti-Inflamatórios/farmacologia , Transportador de Glucose Tipo 4/genética , Atrofia Muscular/tratamento farmacológico , Receptores de Glucocorticoides/química , Transdução de Sinais/efeitos dos fármacos , Células A549 , Regulação Alostérica , Animais , Anti-Inflamatórios/síntese química , Linhagem Celular Transformada , Regulação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Lipopolissacarídeos/administração & dosagem , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Relação Estrutura-AtividadeRESUMO
Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.
Assuntos
Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cinética , Camundongos , Modelos Biológicos , Fotodegradação , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Imagem Individual de MoléculaRESUMO
Most transcription factors, including nuclear receptors, are widely modeled as binding regulatory elements as monomers, homodimers, or heterodimers. Recent findings in live cells show that the glucocorticoid receptor NR3C1 (also known as GR) forms tetramers on enhancers, owing to an allosteric alteration induced by DNA binding, and suggest that higher oligomerization states are important for the gene regulatory responses of GR. By using a variant (GRtetra) that mimics this allosteric transition, we performed genome-wide studies using a GR knockout cell line with reintroduced wild-type GR or reintroduced GRtetra. GRtetra acts as a super receptor by binding to response elements not accessible to the wild-type receptor and both induces and represses more genes than GRwt. These results argue that DNA binding induces a structural transition to the tetrameric state, forming a transient higher-order structure that drives both the activating and repressive actions of glucocorticoids.
Assuntos
Cromatina/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Genoma , Glucocorticoides/farmacologia , RNA Mensageiro/genética , Receptores de Glucocorticoides/química , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina/química , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Edição de Genes/métodos , Glucocorticoides/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Ligação Proteica , Estrutura Quaternária de Proteína , RNA Mensageiro/metabolismo , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ativação TranscricionalRESUMO
The Creb-Regulated Transcriptional Coactivator (Crtc) family of transcriptional coregulators drive Creb1-mediated transcription effects on metabolism in many tissues, but the in vivo effects of Crtc2/Creb1 transcription on skeletal muscle metabolism are not known. Skeletal muscle-specific overexpression of Crtc2 (Crtc2 mice) induced greater mitochondrial activity, metabolic flux capacity for both carbohydrates and fats, improved glucose tolerance and insulin sensitivity, and increased oxidative capacity, supported by upregulation of key metabolic genes. Crtc2 overexpression led to greater weight loss during alternate day fasting (ADF), selective loss of fat rather than lean mass, maintenance of higher energy expenditure during the fast and reduced binge-eating during the feeding period. ADF downregulated most of the mitochondrial electron transport genes, and other regulators of mitochondrial function, that were substantially reversed by Crtc2-driven transcription. Glucocorticoids acted with AMPK to drive atrophy and mitophagy, which was reversed by Crtc2/Creb1 signaling. Crtc2/Creb1-mediated signaling coordinates metabolic adaptations in skeletal muscle that explain how Crtc2/Creb1 regulates metabolism and weight loss.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Metabolismo Energético , Jejum , Resistência à Insulina , Músculo Esquelético/fisiologia , Fatores de Transcrição/fisiologia , Redução de Peso/fisiologia , Animais , Masculino , Camundongos , Camundongos TransgênicosRESUMO
Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach.
Assuntos
Sequência de Bases , Pegada de DNA , DNA/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , DNA/química , Clivagem do DNA , Desoxirribonuclease I/química , Endodesoxirribonucleases/química , Genômica , Humanos , Ligação Proteica/genética , Estrutura Terciária de Proteína , Curva ROC , Fatores de Transcrição/químicaRESUMO
Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA synthesis (i.e., eRNA). In particular, multiple regions were transcribed to eRNA within the regulatory region of MYOD1, including previously characterized distal regulatory regions (DRR) and core enhancer (CE). While (CE)RNA enhanced RNA polymerase II (Pol II) occupancy and transcription at MYOD1, (DRR)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events.
Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Proteína MyoD/genética , Miogenina/genética , Regiões Promotoras Genéticas , RNA/biossíntese , RNA/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismoRESUMO
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Elementos Facilitadores Genéticos , Jejum/metabolismo , Hepatócitos/metabolismo , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Glucose/metabolismo , Cetonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , Receptores de Glucocorticoides/genética , Ativação TranscricionalRESUMO
Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.
Assuntos
Diferenciação Celular , Células Th1/citologia , Células Th1/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imunofenotipagem , Interferon gama/metabolismo , Interleucina-12/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6 , Fator de Transcrição STAT4/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células Th1/metabolismo , ToxoplasmaRESUMO
The interaction of regulatory proteins with the complex nucleoprotein structures that are found in mammalian cells involves chromatin reorganization at multiple levels. Mechanisms that support these transitions are complex on many timescales, which range from milliseconds to minutes or hours. In this Review, we discuss emerging concepts regarding the function of regulatory elements in living cells. We also explore the involvement of these dynamic and stochastic processes in the evolution of fluctuating transcriptional activity states that are now commonly reported in eukaryotic systems.