Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods ; 203: 297-310, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34500068

RESUMO

Amyotrophic lateral sclerosis (ALS) represents a complex neurodegenerative disorder with significant genetic heterogeneity. To date, both the genetic etiology and the underlying molecular mechanisms driving this disease remain poorly understood, although in recent years several studies have highlighted a number of genetic mutations causative for ALS. With these mutations pointing to potential pathways that may be affected within individuals with ALS, having the ability to generate human neurons and other disease relevant cells containing these mutations becomes even more critical if new therapies are to emerge. Recent developments with the advent of induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR) gene editing fields gave us the tools to introduce or correct a specific mutation at any site within the genome of an iPSC, and thus model the specific contribution of risk mutations. In this study we describe a rapid and efficient way to either introduce a mutation into a control line, or to correct an allele-specific mutation, generating an isogenic control line from patient-derived iPSCs with a given mutation. The mutations introduced were the G94A (also known as G93A) mutation into SOD1 or H517Q into FUS, and the mutation corrected was a patient iPSC line with I114T mutation in SOD1. A combination of small molecules and growth factors were used to guide a stepwise differentiation of the edited cells into motor neurons in order to demonstrate that disease-relevant cells could be generated for downstream applications. Through a combination of iPSCs and CRISPR editing, the cells generated here will provide fundamental insights into the molecular mechanisms underlying neuron degeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fluxo de Trabalho
2.
Proc Natl Acad Sci U S A ; 110(12): 4697-702, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23401527

RESUMO

Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação
3.
J Neurosci ; 34(11): 4070-5, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623784

RESUMO

Rodent-based studies have shown that neurons undergo major developmental changes to ion channel expression and ionic gradients that determine their excitation-inhibition balance. Neurons derived from human pluripotent stem cells theoretically offer the potential to study classical developmental processes in a human-relevant system, although this is currently not well explored. Here, we show that excitatory cortical-patterned neurons derived from multiple human pluripotent stem cell lines exhibit native-like maturation changes in AMPAR composition such that there is an increase in the expression of GluA2(R) subunits. Moreover, we observe a dynamic shift in intracellular Cl- levels, which determines the reversal potential of GABAAR-mediated currents and is influenced by neurotrophic factors. The shift is concomitant with changes in KCC2 and NKCC1 expression. Because some human diseases are thought to involve perturbations to AMPAR GluA2 content and others in the chloride reversal potential, human stem-cell-derived neurons represent a valuable tool for studying these fundamental properties.


Assuntos
Córtex Cerebral/citologia , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/citologia , Receptores de AMPA/fisiologia , Receptores de GABA-A/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Humanos , Masculino , Técnicas de Patch-Clamp , Receptores de AMPA/genética , Receptores de GABA-A/genética , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/fisiologia , Simportadores/genética , Simportadores/fisiologia , Cotransportadores de K e Cl-
4.
J Physiol ; 592(19): 4353-63, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172951

RESUMO

We have assessed, using whole-cell patch-clamp recording and RNA-sequencing (RNA-seq), the properties and composition of GABAA receptors (GABAARs) and strychnine-sensitive glycine receptors (GlyRs) expressed by excitatory cortical neurons derived from human embryonic stem cells (hECNs). The agonists GABA and muscimol gave EC50 values of 278 µm and 182 µm, respectively, and the presence of a GABAAR population displaying low agonist potencies is supported by strong RNA-seq signals for α2 and α3 subunits. GABAAR-mediated currents, evoked by EC50 concentrations of GABA, were blocked by bicuculline and picrotoxin with IC50 values of 2.7 and 5.1 µm, respectively. hECN GABAARs are predominantly γ subunit-containing as assessed by the sensitivity of GABA-evoked currents to diazepam and insensitivity to Zn(2+), together with the weak direct agonist action of gaboxadol; RNA-seq indicated a predominant expression of the γ2 subunit. Potentiation of GABA-evoked currents by propofol and etomidate and the lack of inhibition of currents by salicylidine salycylhydrazide (SCS) indicate expression of the ß2 or ß3 subunit, with RNA-seq analysis indicating strong expression of ß3 in hECN GABAARs. Taken together our data support the notion that hECN GABAARs have an α2/3ß3γ2 subunit composition - a composition that also predominates in immature rodent cortex. GlyRs expressed by hECNs were activated by glycine with an EC50 of 167 µm. Glycine-evoked (500 µm) currents were blocked by strychnine (IC50 = 630 nm) and picrotoxin (IC50 = 197 µm), where the latter is suggestive of a population of heteromeric receptors. RNA-seq indicates GlyRs are likely to be composed of α2 and ß subunits.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Humanos , Muscimol/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
5.
iScience ; 27(3): 109166, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433895

RESUMO

Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.

6.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831212

RESUMO

A multitude of in vitro models based on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) have been developed to investigate the underlying causes of selective MN degeneration in motor neuron diseases (MNDs). For instance, spheroids are simple 3D models that have the potential to be generated in large numbers that can be used across different assays. In this study, we generated MN spheroids and developed a workflow to analyze them. To start, the morphological profiling of the spheroids was achieved by developing a pipeline to obtain measurements of their size and shape. Next, we confirmed the expression of different MN markers at the transcript and protein levels by qPCR and immunocytochemistry of tissue-cleared samples, respectively. Finally, we assessed the capacity of the MN spheroids to display functional activity in the form of action potentials and bursts using a microelectrode array approach. Although most of the cells displayed an MN identity, we also characterized the presence of other cell types, namely interneurons and oligodendrocytes, which share the same neural progenitor pool with MNs. In summary, we successfully developed an MN 3D model, and we optimized a workflow that can be applied to perform its morphological, gene expression, protein, and functional profiling over time.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Fluxo de Trabalho , Neurônios Motores/metabolismo
7.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159209

RESUMO

Astrocytes play important roles in the function and survival of neuronal cells. Dysfunctions of astrocytes are associated with numerous disorders and diseases of the nervous system, including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Human-induced pluripotent stem cell (iPSC)-based approaches are becoming increasingly important for the study of the mechanisms underlying the involvement of astrocytes in non-cell autonomous processes of motor neuron degeneration in ALS. These studies must account for the molecular and functional diversity among astrocytes in different regions of the brain and spinal cord. It is essential that the most pathologically relevant astrocyte preparations are used when investigating non-cell autonomous mechanisms of either upper or lower motor neuron degeneration in ALS. Here, we describe the efficient and streamlined generation of human iPSC-derived astrocytes with molecular and biological properties similar to physiological astrocytes in the ventral spinal cord. These induced astrocytes exhibit spontaneous and ATP-induced calcium transients, and lack signs of overt activation. Human iPSC-derived astrocytes with ventral spinal cord features offer advantages over more generic astrocyte preparations for the study of both ventral spinal cord astrocyte biology and the involvement of astrocytes in mechanisms of lower motor neuron degeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios Motores/patologia , Degeneração Neural/patologia
8.
Elife ; 52016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692071

RESUMO

Evolutionary differences in gene regulation between humans and lower mammalian experimental systems are incompletely understood, a potential translational obstacle that is challenging to surmount in neurons, where primary tissue availability is poor. Rodent-based studies show that activity-dependent transcriptional programs mediate myriad functions in neuronal development, but the extent of their conservation in human neurons is unknown. We compared activity-dependent transcriptional responses in developing human stem cell-derived cortical neurons with those induced in developing primary- or stem cell-derived mouse cortical neurons. While activity-dependent gene-responsiveness showed little dependence on developmental stage or origin (primary tissue vs. stem cell), notable species-dependent differences were observed. Moreover, differential species-specific gene ortholog regulation was recapitulated in aneuploid mouse neurons carrying human chromosome-21, implicating promoter/enhancer sequence divergence as a factor, including human-specific activity-responsive AP-1 sites. These findings support the use of human neuronal systems for probing transcriptional responses to physiological stimuli or indeed pharmaceutical agents.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Transcrição Gênica , Animais , Células Cultivadas , Humanos , Camundongos
9.
PLoS One ; 9(1): e85932, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465796

RESUMO

Widespread use of human pluripotent stem cells (hPSCs) to study neuronal physiology and function is hindered by the ongoing need for specialist expertise in converting hPSCs to neural precursor cells (NPCs). Here, we describe a new methodology to generate cryo-preservable hPSC-derived NPCs that retain an anterior identity and are propagatable long-term prior to terminal differentiation, thus abrogating regular de novo neuralization. Key to achieving passagable NPCs without loss of identity is the combination of both absence of EGF and propagation in physiological levels (3%) of O2. NPCs generated in this way display a stable long-term anterior forebrain identity and importantly retain developmental competence to patterning signals. Moreover, compared to NPCs maintained at ambient O2 (21%), they exhibit enhanced uniformity and speed of functional maturation, yielding both deep and upper layer cortical excitatory neurons. These neurons display multiple attributes including the capability to form functional synapses and undergo activity-dependent gene regulation. The platform described achieves long-term maintenance of anterior neural precursors that can give rise to forebrain neurones in abundance, enabling standardised functional studies of neural stem cell maintenance, lineage choice and neuronal functional maturation for neurodevelopmental research and disease-modelling.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Células-Tronco Neurais/citologia , Oxigênio/farmacologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA