Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Small ; 20(21): e2310327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098433

RESUMO

The unique catalytic activities of high-entropy alloys (HEAs) emerge from the complex interaction among different elements in a single-phase solid solution. As a "green" nanofabrication technique, inert gas condensation (IGC) combined with laser source opens up a highly efficient avenue to develop HEA nanoparticles (NPs) for catalysis and energy storage. In this work, the novel N-doped non-noble HEA NPs are designed and successfully prepared by IGC. The N-doping effects of HEA NPs on oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are systematically investigated. The results show that N-doping is conducive to improving the OER, but unfavorable for HER activity. The FeCoNiCrN NPs achieve an overpotential of 269.7 mV for OER at a current density of 10 mA cm-2 in 1.0 M KOH solution, which is among the best reported values for non-noble HEA catalysts. The effects of the differences in electronegativity, ionization energy and electron affinity energy among mixed elements in N-doped HEAs are discussed as inducing electron transfer efficiency. Combined with X-ray photoelectron spectroscopy and the extended X-ray absorption fine structure analysis, an element-design strategy in N-doped HEAs electrocatalysts is proposed to improve the intrinsic activity and ameliorate water splitting performance.

2.
Small ; : e2309735, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618655

RESUMO

Solid oxide fuel cells (SOFCs) are paving the way to clean energy conversion, relying on efficient oxygen-ion conductors with high ionic conductivity coupled with a negligible electronic contribution. Doped rare earth aluminates are promising candidates for SOFC electrolytes due to their high ionic conductivity. However, they often suffer from p-type electronic conductivity at operating temperatures above 500 °C under oxidizing conditions caused by the incorporation of oxygen into the lattice. High entropy materials are a new class of materials conceptualized to be stable at higher temperatures due to their high configurational entropy. Introducing this concept to rare earth aluminates can be a promising approach to stabilize the lattice by shifting the stoichiometric point of the oxides to higher oxygen activities, and thereby, reducing the p-type electronic conductivity in the relevant oxygen partial pressure range. In this study, the high entropy oxide (Gd,La,Nd,Pr,Sm)AlO3 is synthesized and doped with Ca. The Ca-doped (Gd,La,Nd,Pr,Sm)AlO3 compounds exhibit a higher ionic conductivity than most of the corresponding Ca-doped rare earth aluminates accompanied by a reduction of the p-type electronic conductivity contribution typically observed under oxidizing conditions. In light of these findings, this study introduces high entropy aluminates as a promising candidate for SOFC electrolytes.

3.
Angew Chem Int Ed Engl ; 63(7): e202315371, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014650

RESUMO

The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na1.65 Mn0.4 Fe0.12 Ni0.12 Cu0.12 Co0.12 Cd0.12 [Fe(CN)6 ]0.92 □0.08 ⋅ 1.09H2 O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na+ insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.

4.
Small ; 19(33): e2300721, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081277

RESUMO

Topologically disordered metallic glass nanoparticles (MGNPs) with highly active and tailorable surface chemistries have immense potential for functional uses. The synthesis of free-standing MGNPs is crucial and intensively pursued because their activity strongly depends on their exposed surfaces. Herein, a novel laser-evaporated inert-gas condensation method is designed and successfully developed for synthesizing free-standing MGNPs without substrates or capping agents, which is implemented via pulse laser-induced atomic vapor deposition under an inert helium atmosphere. In this way, the metallic atoms vaporized from the targets collide with helium atoms and then condense into short-range-order (SRO) clusters, which mutually assemble to form the MGNPs. Using this method, free-standing Pd40 Ni40 P20 MGNPs with a spherical morphology are synthesized, which demonstrates satisfactory electrocatalytic activity and durability in oxygen reduction reactions. Moreover, local structure investigations using synchrotron pair distribution function techniques reveal the transformation of SRO cluster connection motifs of the MGNPs from face-sharing to edge-sharing modes during cyclic voltammetry cycles, which enhances the electrochemical stability by blocking crystallization. This approach provides a general strategy for preparing free-standing MGNPs with high surface activities, which may have widespread functional applications.

5.
Methods ; 188: 30-36, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32615232

RESUMO

Digitalization, especially the use of machine learning and computational intelligence, is considered to dramatically shape medical procedures in the near future. In the field of cancer diagnostics, radiomics, the extraction of multiple quantitative image features and their clustered analysis, is gaining increasing attention to obtain more detailed, reproducible, and meaningful information about the disease entity, its prognosis and the ideal therapeutic option. In this context, automation of diagnostic procedures can improve the entire pipeline, which comprises patient registration, planning and performing an imaging examination at the scanner, image reconstruction, image analysis, and feeding the diagnostic information from various sources into decision support systems. With a focus on cancer diagnostics, this review article reports and discusses how computer-assistance can be integrated into diagnostic procedures and which benefits and challenges arise from it. Besides a strong view on classical imaging modalities like x-ray, CT, MRI, ultrasound, PET, SPECT and hybrid imaging devices thereof, it is outlined how imaging data can be combined with data deriving from patient anamnesis, clinical chemistry, pathology, and different omics. In this context, the article also discusses IT infrastructures that are required to realize this integration in the clinical routine. Although there are still many challenges to comprehensively implement automated and integrated data analysis in molecular cancer imaging, the authors conclude that we are entering a new era of medical diagnostics and precision medicine.


Assuntos
Automação , Análise de Dados , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Neoplasias/diagnóstico , Conjuntos de Dados como Assunto , Previsões , Troca de Informação em Saúde , Humanos , Processamento de Imagem Assistida por Computador/tendências , Aprendizado de Máquina , Oncologia/tendências , Imagem Molecular/tendências , Telemedicina/métodos , Telemedicina/tendências
6.
J Am Chem Soc ; 143(18): 6969-6980, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913724

RESUMO

The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.

7.
Inorg Chem ; 60(1): 115-123, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314913

RESUMO

Metal molybdates constitute a promising class of materials with a wide application range. Here, we report, to our knowledge for the first time, on the preparation and characterization of medium-entropy and high-entropy metal molybdates, synthesized by an oxalate-based coprecipitation approach. The high-entropy molybdate crystallizes in a triclinic structure, thus rendering it as high-entropy material with the lowest symmetry reported so far. This is noteworthy because high-entropy materials usually tend to crystallize into highly symmetrical structures. It is expected that application of the high-entropy concept to metal molybdates alters the material's characteristics and adds the features of high-entropy systems, that is, tailorable composition and properties. The phase purity and solid solution nature of the molybdates were confirmed by XRD, Raman spectroscopy, TEM, XPS, and ICP-OES.

8.
Artigo em Alemão | MEDLINE | ID: mdl-34297162

RESUMO

Public health research and epidemiological and clinical studies are necessary to understand the COVID-19 pandemic and to take appropriate action. Therefore, since early 2020, numerous research projects have also been initiated in Germany. However, due to the large amount of information, it is currently difficult to get an overview of the diverse research activities and their results. Based on the "Federated research data infrastructure for personal health data" (NFDI4Health) initiative, the "COVID-19 task force" is able to create easier access to SARS-CoV-2- and COVID-19-related clinical, epidemiological, and public health research data. Therefore, the so-called FAIR data principles (findable, accessible, interoperable, reusable) are taken into account and should allow an expedited communication of results. The most essential work of the task force includes the generation of a study portal with metadata, selected instruments, other study documents, and study results as well as a search engine for preprint publications. Additional contents include a concept for the linkage between research and routine data, a service for an enhanced practice of image data, and the application of a standardized analysis routine for harmonized quality assessment. This infrastructure, currently being established, will facilitate the findability and handling of German COVID-19 research. The developments initiated in the context of the NFDI4Health COVID-19 task force are reusable for further research topics, as the challenges addressed are generic for the findability of and the handling with research data.


Assuntos
Pesquisa Biomédica/tendências , COVID-19 , Disseminação de Informação , Alemanha , Humanos , Metadados , Pandemias , SARS-CoV-2
9.
Small ; 16(39): e2004400, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32885564

RESUMO

The properties of a material can be engineered by manipulating its atomic and chemical architecture. Nanoglasses which have been recently invented and comprise nanosized glassy particles separated by amorphous interfaces, have shown promising properties. A potential way to exploit the structural benefits of nanoglasses and of nanocrystalline materials is to optimize the composition to obtain crystals forming within the glassy particles. Here, a metastable Fe-10 at% Sc nanoglass is synthesized. A complex hierarchical microstructure is evidenced experimentally at the atomic scale. This bulk material comprises grains of a Fe90 Sc10 amorphous matrix separated by an amorphous interfacial network enriched and likely stabilized by hydrogen, and property-enhancing pure-Fe nanocrystals self-assembled within the matrix. This composite structure leads a yield strength above 2.5 GPa with an exceptional quasi-homogeneous plastic flow of more than 60% in compression. This work opens new pathways to design materials with even superior properties.

10.
Phys Rev Lett ; 125(5): 050401, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794871

RESUMO

The phase of de Broglie matter waves is a sensitive probe for small forces. In particular, the attractive van der Waals force experienced by polarizable atoms in the close vicinity of neutral surfaces is of importance in nanoscale systems. It results in a phase shift that can be observed in matter-wave diffraction experiments. Here, we observe Poisson spot diffraction of indium atoms at submillimeter distances behind spherical submicron silicon dioxide particles to probe the dispersion forces between atoms and the particle surfaces. We compare the measured relative intensity of Poisson's spot to theoretical results derived from first principles in an earlier communication and find a clear signature of the atom-surface interaction.

11.
Eur Radiol ; 30(10): 5510-5524, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32377810

RESUMO

Digitization of medicine requires systematic handling of the increasing amount of health data to improve medical diagnosis. In this context, the integration of the versatile diagnostic information, e.g., from anamnesis, imaging, histopathology, and clinical chemistry, and its comprehensive analysis by artificial intelligence (AI)-based tools is expected to improve diagnostic precision and the therapeutic conduct. However, the complex medical environment poses a major obstacle to the translation of integrated diagnostics into clinical research and routine. There is a high need to address aspects like data privacy, data integration, interoperability standards, appropriate IT infrastructure, and education of staff. Besides this, a plethora of technical, political, and ethical challenges exists. This is complicated by the high diversity of approaches across Europe. Thus, we here provide insights into current international activities on the way to digital comprehensive diagnostics. This includes a technical view on challenges and solutions for comprehensive diagnostics in terms of data integration and analysis. Current data communications standards and common IT solutions that are in place in hospitals are reported. Furthermore, the international hospital digitalization scoring and the European funding situation were analyzed. In addition, the regional activities in radiomics and the related publication trends are discussed. Our findings show that prerequisites for comprehensive diagnostics have not yet been sufficiently established throughout Europe. The manifold activities are characterized by a heterogeneous digitization progress and they are driven by national efforts. This emphasizes the importance of clear governance, concerted investments, and cooperation at various levels in the health systems.Key Points• Europe is characterized by heterogeneity in its digitization progress with predominantly national efforts. Infrastructural prerequisites for comprehensive diagnostics are not given and not sufficiently funded throughout Europe, which is particularly true for data integration.• The clinical establishment of comprehensive diagnostics demands for a clear governance, significant investments, and cooperation at various levels in the healthcare systems.• While comprehensive diagnostics is on its way, concerted efforts should be taken in Europe to get consensus concerning interoperability and standards, security, and privacy as well as ethical and legal concerns.


Assuntos
Inteligência Artificial/tendências , Informática Médica/tendências , Radiologia/tendências , Telemedicina/tendências , Sistemas Computacionais , Mineração de Dados , Europa (Continente) , Humanos , Pesquisa Interdisciplinar , Internacionalidade , Privacidade , Editoração/tendências , Software
12.
J Nanosci Nanotechnol ; 19(6): 3654-3657, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744801

RESUMO

Nanostructured nickel ferrite (NiFe2O4) is prepared via high-energy ball milling of the bulk counterpart at ambient temperature. The structure of the as-prepared nanoferrite is characterized by Raman spectroscopy and 57Fe Mössbauer spectroscopy. Due to the ability of these spectroscopic techniques to probe the local environment of ions, valuable complementary insight into the nature of the local structural disorder of nanosized NiFe2O4 is provided. For the first time, evidence is given of the tetrahedrally coordinated nickel cations in the nanomaterial.


Assuntos
Nanoestruturas , Níquel , Cátions , Compostos Férricos
13.
Microsc Microanal ; 25(4): 891-902, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31223100

RESUMO

A reliable quantitative analysis in electron tomography, which depends on the segmentation of the three-dimensional reconstruction, is challenging because of constraints during tilt-series acquisition (missing wedge) and reconstruction artifacts introduced by reconstruction algorithms such as the Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete Algebraic Reconstruction Technique (DART). We have carefully evaluated the fidelity of segmented reconstructions analyzing a disordered mesoporous carbon used as support in catalysis. Using experimental scanning transmission electron microscopy (STEM) tomography data as well as realistic phantoms, we have quantitatively analyzed the effect on the morphological description as well as on diffusion properties (based on a random-walk particle-tracking simulation) to understand the role of porosity in catalysis. The morphological description of the pore structure can be obtained reliably both using SIRT and DART reconstructions even in the presence of a limited missing wedge. However, the measured pore volume is sensitive to the threshold settings, which are difficult to define globally for SIRT reconstructions. This leads to noticeable variations of the diffusion coefficients in the case of SIRT reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the anisotropy of the determined diffusion properties was evaluated, which was significant in the presence of a limited missing wedge for SIRT and strongly reduced for DART.

14.
Nano Lett ; 18(7): 4188-4194, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29869884

RESUMO

One of the central themes in the amorphous materials research is to understand the nanoscale structural responses to mechanical and thermal agitations, the decoding of which is expected to provide new insights into the complex amorphous structural-property relationship. For common metallic glasses, their inherent atomic structural inhomogeneities can be rejuvenated and amplified by cryogenic thermal cycling, thus can be decoded from their responses to mechanical and thermal agitations. Here, we reported an anomalous mechanical response of a new kind of metallic glass (nanoglass) with nanoscale interface structures to cryogenic thermal cycling. As compared to those metallic glasses by liquid quenching, the Sc75Fe25 (at. %) nanoglass exhibits a decrease in the Young's modulus but a significant increase in the yield strength after cryogenic cycling treatments. The abnormal mechanical property change can be attributed to the complex atomic rearrangements at the short- and medium- range orders due to the intrinsic nonuniformity of the nanoglass architecture. The present work gives a new route for designing high-performance metallic glassy materials by manipulating their atomic structures and helps for understanding the complex atomic structure-property relationship in amorphous materials.

15.
Eur Radiol ; 28(1): 96-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28667482

RESUMO

OBJECTIVE: To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. PATIENTS AND METHODS: We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. RESULTS: MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. CONCLUSION: Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. KEY POINTS: • Spinal cord atrophy progression was observed in NMO. • Spinal cord atrophy changes were associated with disability progression in NMO. • Brain lesion and atrophy were related to disability progression in MS.


Assuntos
Encéfalo/patologia , Avaliação da Deficiência , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Neuromielite Óptica/patologia , Medula Espinal/patologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiopatologia , Adulto Jovem
16.
Nanotechnology ; 29(23): 235205, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553481

RESUMO

Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

18.
J Surg Oncol ; 115(3): 238-242, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27966220

RESUMO

OBJECTIVE: Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. METHODS: In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. RESULTS: The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm3 and 7,770 mm3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. CONCLUSION: 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Modelos Anatômicos , Impressão Tridimensional , Idoso , Automação , Neoplasias da Mama/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Ultrassonografia/métodos
19.
Phys Chem Chem Phys ; 19(19): 12127-12135, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28447080

RESUMO

Magnetic nanoparticles (MNPs) functionalized with (pro-)mesogenic ligands are implemented into a nematic liquid crystal (LC) and studied regarding both colloidal stability and magneto-optical behavior. In this study, the particle surface is specifically engineered to tune the MNP interactions with the LC host. For this purpose, four types of (pro-)mesogenic ligands (ML) are synthesized, which are composed of three structural parts, i.e., a rigid, LC motif (i.e., cyanobiphenyl) and a functional group for nanoparticle binding, both linked via a flexible spacer of different alkyl chain lengths. Electrostatically stabilized CoFe2O4 and γ-Fe2O3 nanoparticles with narrow size distribution and sizes below 3 nm are obtained via co-precipitation and subsequently functionalized to yield MNP@ML nanoparticles. Studies on the behaviour of the MNP@ML nanoparticles in the commercial LC host (i.e., 4-pentyl-4'-cyanobiphenyl (5CB)) in the bulk and in thin films in LC test cells, reveal the initial formation of some heterogeneities after transition from the isotropic to the nematic phase. Homogenous MNP@ML-5CB hybrids with long-term, colloidal stability, however, are obtained after magnetic separation of initially formed particle aggregates. In particular, MLs with carboxy groups and high structural flexibility (i.e., long linker lengths) are shown to be well suited to form stable MNP colloids, allowing for high MNP doping levels. As compared to undoped 5CB, the CoFe2O4@MLx-5CB hybrids show an increased sensitivity to the magnetic field, affecting the Fréedericksz transition. The strongest effect, however, is observed in magnetic and electric fields. The coupling of the ultrasmall, spherical MNPs with the LC director in the magnetic field suggests the formation of LC-induced, anisometric MNP clusters.

20.
J Cardiovasc Magn Reson ; 18: 15, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062364

RESUMO

BACKGROUND: The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR). METHODS: TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50%) or reduced (<50%) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium. RESULTS: Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects. CONCLUSIONS: TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.


Assuntos
Cardiomiopatias/diagnóstico , Imagem Cinética por Ressonância Magnética , Volume Sistólico , Função Ventricular Esquerda , Adulto , Idoso , Fenômenos Biomecânicos , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Meios de Contraste , Endocárdio/patologia , Endocárdio/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Variações Dependentes do Observador , Pericárdio/patologia , Pericárdio/fisiopatologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Torção Mecânica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA