Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Syst ; 15(6): 488-496, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38810640

RESUMO

As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as "is-a" relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.


Assuntos
Processamento de Linguagem Natural , Semântica , Humanos , Genes/genética , Ontologia Genética , Biologia Computacional/métodos , Animais
3.
Tissue Eng Part A ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38753711

RESUMO

Rationale: Elevated shear stress (ESS) induces vascular remodeling in veins exposed to arterial blood flow, which can lead to arteriovenous (AV) fistula failure. The molecular mechanisms driving remodeling have not been comprehensively examined with a single-cell resolution before. Objective: Using an in vivo animal mode, single-cell RNA sequencing, and histopathology, we precisely manipulate blood flow to comprehensively characterize all cell subpopulations important during vascular remodeling. Methods: AV loops were created in saphenous vessels of rats using a contralateral saphenous vein interposition graft to promote ESS. Saphenous veins with no elevated shear stress (NSS) were anastomosed as controls. Findings: ESS promoted transcriptional homogeneity, and NSS promoted considerable heterogeneity. Specifically, ESS endothelial cells (ECs) showed a more homogeneous transcriptional response promoting angiogenesis and upregulating endothelial-to-mesenchymal transition inhibiting genes (Klf2). NSS ECs upregulated antiproliferation genes such as Cav1, Cst3, and Btg1. In macrophages, ESS promoted a large homogeneous subpopulation, creating a mechanically activated, proinflammatory and thus proangiogenic myeloid phenotype, whereas NSS myeloid cells expressed the anti-inflammatory and antiangiogenetic marker Mrc1. Conclusion: ESS activates unified gene expression profiles to induce adaption of the vessel wall to hemodynamic alterations. Targeted depletion of the identified cellular subpopulations may lead to novel therapies to prevent excessive venous remodeling, intimal hyperplasia, and AV fistula failure.

4.
Adv Wound Care (New Rochelle) ; 13(4): 155-166, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38299969

RESUMO

Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and ß-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and ß-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and ß-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent ß-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and ß-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and ß-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while ß-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.


Assuntos
Cicatriz , beta-Glucanas , ortoaminobenzoatos , Animais , Camundongos , beta-Glucanas/farmacologia , Colágeno , Camundongos Endogâmicos C57BL , Cicatrização
5.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766048

RESUMO

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

6.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113333

RESUMO

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Actinas , Guanosina Trifosfato , Quinases Ativadas por p21 , Proteínas Proto-Oncogênicas p21(ras) , Receptor IGF Tipo 1 , Proteína rhoA de Ligação ao GTP/genética , Transdução de Sinais , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA