Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 19(11): 1169-1174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32601482

RESUMO

Relaxor ferroelectrics exhibit outstanding dielectric, electromechanical and electrocaloric properties, and are the materials of choice for acoustic sensors, solid-state coolers, transducers and actuators1-4. Despite more than five decades of intensive study, relaxor ferroelectrics remain one of the least understood material families in ferroelectric materials and condensed matter physics5-14. Here, by combining X-ray diffraction, atomic force microscope infrared spectroscopy and first-principles calculations, we reveal that the relaxor behaviour of ferroelectric polymers originates from conformational disorder, completely different from classic perovskite relaxors, which are typically characterized by chemical disorder. We show that chain chirality is essential to the formation of the disordered helix conformation arising from local distortions of gauche torsional angles, which consequently give rise to relaxor properties in polymers. This study not only sheds light on the fundamental mechanisms of relaxor ferroelectrics, but also offers guidance for the discovery of new ferroelectric relaxor organic materials for flexible, scalable and biocompatible sensor and energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA