Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176097

RESUMO

Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Melhoramento Vegetal , Ploidias , Aclimatação , Polimorfismo de Nucleotídeo Único
2.
Phytopathology ; 109(10): 1664-1675, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369363

RESUMO

Fusarium head blight (FHB) is a major fungal disease affecting wheat production worldwide. Since the early 1990s, FHB, caused primarily by Fusarium graminearum, has become one of the most significant diseases faced by wheat producers in Canada and the United States. The increasing FHB problem is likely due to the increased adoption of conservation tillage practices, expansion of maize production, use of susceptible wheat varieties in rotation, and climate variability. Durum wheat (Triticum turgidum sp. durum) is notorious for its extreme susceptibility to FHB and breeding for resistance is complicated because sources of FHB resistance are rare in the primary gene pool of tetraploid wheat. Losses due to this disease include yield, test weight, seed quality, food and feed quality, and when severe, market access. More importantly, it is the contamination with mycotoxins, such as deoxynivalenol, in Fusarium-infected durum kernels that causes the most serious economic as well as food and feed safety concerns. Several studies and thorough reviews have been published on germplasm development and breeding for FHB resistance and the genetics and genomics of FHB resistance in bread or common wheat (T. aestivum); however, similar reviews have not been conducted in durum wheat. Thus, the aim of this review is to summarize and discuss the recent research efforts to mitigate FHB in durum wheat, including quantitative trait locus mapping, genome-wide association studies, genomic prediction, mutagenesis and characterization of genes and pathways involved in FHB resistance. It also highlights future directions, FHB-resistant germplasm, and the potential role of morphological traits to enhance FHB resistance in durum wheat.


Assuntos
Resistência à Doença , Fusarium , Melhoramento Vegetal , Triticum , Canadá , Fusarium/fisiologia , Estudo de Associação Genômica Ampla , Pesquisa/tendências , Triticum/microbiologia
3.
Plant Genome ; : e20410, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974527

RESUMO

Tetraploid wheats (Triticum turgidum L.), including durum wheat (T. turgidum ssp. durum (Desf.) Husn.), are important crops with high nutritional and cultural values. However, their production is constrained by sensitivity to environmental conditions. In search of adaptive genetic signatures tracing historical selection and hybridization events, we performed genome scans on two datasets: (1) Durum Global Diversity Panel comprising a total of 442 tetraploid wheat and wild progenitor accessions including durum landraces (n = 286), domesticated emmer (T. turgidum ssp. dicoccum (Schrank) Thell.; n = 103) and wild emmer (T. turgidum ssp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.; n = 53) wheats genotyped using the 90K single nucleotide polymorphism (SNP) array, and (2) a second dataset comprising a total 121 accessions of nine T. turgidum subspecies including wild emmer genotyped with >100 M SNPs from whole-genome resequencing. The genome scan on the first dataset detected six outlier loci on chromosomes 1A, 1B, 3A (n = 2), 6A, and 7A. These loci harbored important genes for adaptation to abiotic stresses, phenological responses, such as seed dormancy, circadian clock, flowering time, and key yield-related traits, including pleiotropic genes, such as HAT1, KUODA1, CBL1, and ZFN1. The scan on the second dataset captured a highly differentiated region on chromosome 2B that shows significant differentiation between two groups: one group consists of Georgian (T. turgidum ssp. paleocolchicum A. Love & D. Love) and Persian (T. turgidum ssp. carthlicum (Nevski) A. Love & D. Love) wheat accessions, while the other group comprises all the remaining tetraploids including wild emmer. This is consistent with a previously reported introgression in this genomic region from T. timopheevii Zhuk. which naturally cohabit in the Georgian and neighboring areas. This region harbored several adaptive genes, including the thermomorphogenesis gene PIF4, which confers temperature-resilient disease resistance and regulates other biological processes. Genome scans can be used to fast-track germplasm housed in gene banks and in situ; which helps to identify environmentally resilient accessions for breeding and/or to prioritize them for conservation.

4.
Front Plant Sci ; 14: 1182548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900749

RESUMO

Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.

5.
Sci Rep ; 10(1): 2098, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034248

RESUMO

Revealing the genetic factors underlying yield and agronomic traits in wheat are an imperative need for covering the global food demand. Yield boosting requires a deep understanding of the genetic basis of grain yield-related traits (e.g., spikelet fertility and sterility). Here, we have detected much natural variation among ancient hexaploid wheat accessions in twenty-two agronomic traits collected over eight years of field experiments. A genome-wide association study (GWAS) using 15 K single nucleotide polymorphisms (SNPs) was applied to detect the genetic basis of studied traits. Subsequently, the GWAS output was reinforced via other statistical and bioinformatics analyses to detect putative candidate genes. Applying the genome-wide SNP-phenotype network defined the most decisive SNPs underlying the traits. Six pivotal SNPs, co-located physically within the genes encoding enzymes, hormone response, metal ion transport, and response to oxidative stress have been identified. Of these, metal ion transport and Gibberellin 2-oxidases (GA2oxs) genes showed strong involvement in controlling the spikelet sterility, which had not been reported previously in wheat. SNP-gene haplotype analysis confirmed that these SNPs influence spikelet sterility, especially the SNP co-located on the exon of the GA2ox gene. Interestingly, these genes were highly expressed in the grain and spike, demonstrating their pivotal role in controlling the trait. The integrative analysis strategy applied in this study, including GWAS, SNP-phenotype network, SNP-gene haplotype, expression analysis, and genome-wide prediction (GP), empower the identification of functional SNPs and causal genes. GP outputs obtained in this study are encouraging for the implementation of the traits to accelerate yield improvement by making an early prediction of complex yield-related traits in wheat. Our findings demonstrate the usefulness of the ancient wheat material as a valuable resource for yield-boosting. This is the first comprehensive genome-wide analysis for spikelet sterility in wheat, and the results provide insights into yield improvement.


Assuntos
Infertilidade das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Triticum/genética , Produção Agrícola , Redes Reguladoras de Genes/genética , Estudos de Associação Genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Triticum/crescimento & desenvolvimento
6.
Front Plant Sci ; 9: 1589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455711

RESUMO

Durum wheat was introduced in the southern prairies of western Canada in the late nineteenth century. Breeding efforts have mainly focused on improving quality traits to meet the pasta industry demands. For this study, 192 durum wheat lines were genotyped using the Illumina 90K Infinium iSelect assay, and resulted in a total of 14,324 polymorphic SNPs. Genetic diversity changed over time, declining during the first 20 years of breeding in Canada, then increased in the late 1980s and early 1990s. We scanned the genome for signatures of selection, using the total variance Fst-based outlier detection method (Lositan), the hierarchical island model (Arlequin) and the Bayesian genome scan method (BayeScan). A total of 407 outliers were identified and clustered into 84 LD-based haplotype loci, spanning all 14 chromosomes of the durum wheat genome. The association analysis detected 54 haplotype loci, of which 39% contained markers with a complete reversal of allelic state. This tendency to fixation of favorable alleles corroborates the success of the Canadian durum wheat breeding programs over time. Twenty-one haplotype loci were associated with multiple traits. In particular, hap_4B_1 explained 20.6, 17.9 and 16.6% of the phenotypic variance of pigment loss, pasta b∗ and dough extensibility, respectively. The locus hap_2B_9 explained 15.9 and 17.8% of the variation of protein content and protein loss, respectively. All these pleiotropic haplotype loci offer breeders the unique opportunity for further improving multiple traits, facilitating marker-assisted selection in durum wheat, and could help in identifying genes as functional annotations of the wheat genome become available.

7.
Front Plant Sci ; 8: 1434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878789

RESUMO

Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.

9.
PLoS One ; 12(1): e0170941, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135299

RESUMO

Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.


Assuntos
Cruzamento , Mapeamento Cromossômico/métodos , Alimentos , Estudos de Associação Genética , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Alelos , Cor , Análise Discriminante , Loci Gênicos , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Análise dos Mínimos Quadrados , Desequilíbrio de Ligação/genética , Fenótipo , Análise de Componente Principal , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA