Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
J Biol Chem ; 289(9): 5687-703, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24407288

RESUMO

Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Neoplasias da Mama/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Fator 1 de Ribosilação do ADP/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteína Adaptadora GRB2/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
3.
Mol Cancer Ther ; 21(12): 1747-1756, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112771

RESUMO

Multiple tumor types overexpress Nectin-4 and the antibody-drug conjugate (ADC), enfortumab vedotin (EV) shows striking efficacy in clinical trials for metastatic urothelial cancer, which expresses high levels of Nectin-4, validating Nectin-4 as a clinical target for toxin delivery in this indication. Despite excellent data in urothelial cancer, little efficacy data are reported for EV in other Nectin-4 expressing tumors and EV therapy can produce significant toxicities in many patients, frequently leading to discontinuation of treatment. Thus, additional approaches to this target with the potential to extend utility and reduce toxicity are warranted. We describe the preclinical development of BT8009, a "Bicycle Toxin Conjugate" (BTC) consisting of a Nectin-4-binding bicyclic peptide, a cleavable linker system and the cell penetrant toxin mono-methylauristatin E (MMAE). BT8009 shows significant antitumor activity in preclinical tumor models, across a variety of cancer indications and is well tolerated in preclinical safety studies. In several models, it shows superior or equivalent antitumor activity to an EV analog. As a small hydrophilic peptide-based drug BT8009 rapidly diffuses from the systemic circulation, through tissues to penetrate the tumor and target tumor cells. It is renally eliminated from the circulation, with a half-life of 1-2 hours in rat and non-human primate. These physical and PK characteristics differentiate BT8009 from ADCs and may provide benefit in terms of tumor penetration and reduced systemic exposure. BT8009 is currently in a Phase 1/2 multicenter clinical trial across the US, Canada, and Europe, enrolling patients with advanced solid tumors associated with Nectin-4 expression.


Assuntos
Carcinoma de Células de Transição , Imunoconjugados , Imunotoxinas , Ratos , Animais , Nectinas , Ciclismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Carcinoma de Células de Transição/tratamento farmacológico
4.
Sci Rep ; 11(1): 12148, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108527

RESUMO

Peposertib (M3814) is a potent and selective DNA-PK inhibitor in early clinical development. It effectively blocks non-homologous end-joining repair of DNA double-strand breaks (DSB) and strongly potentiates the antitumor effect of ionizing radiation (IR) and topoisomerase II inhibitors. By suppressing DNA-PK catalytic activity in the presence of DNA DSB, M3814 potentiates ATM/p53 signaling leading to enhanced p53-dependent antitumor activity in tumor cells. Here, we investigated the therapeutic potential of M3814 in combination with DSB-inducing agents in leukemia cells and a patient-derived tumor. We show that in the presence of IR or topoisomerase II inhibitors, M3814 boosts the ATM/p53 response in acute leukemia cells leading to the elevation of p53 protein levels as well as its transcriptional activity. M3814 synergistically sensitized p53 wild-type, but not p53-deficient, AML cells to killing by DSB-inducing agents via p53-dependent apoptosis involving both intrinsic and extrinsic effector pathways. The antileukemic effect was further potentiated by enhancing daunorubicin-induced myeloid cell differentiation. Further, combined with the fixed-ratio liposomal formulation of daunorubicin and cytarabine, CPX-351, M3814 enhanced the efficacy against leukemia cells in vitro and in vivo without increasing hematopoietic toxicity, suggesting that DNA-PK inhibition could offer a novel clinical strategy for harnessing the anticancer potential of p53 in AML therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Piridazinas/farmacologia , Quinazolinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proliferação de Células , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500260

RESUMO

BACKGROUND: In contrast to immune checkpoint inhibitors, the use of antibodies as agonists of immune costimulatory receptors as cancer therapeutics has largely failed. We sought to address this problem using a new class of modular synthetic drugs, termed tumor-targeted immune cell agonists (TICAs), based on constrained bicyclic peptides (Bicycles). METHODS: Phage libraries displaying Bicycles were panned for binders against tumor necrosis factor (TNF) superfamily receptors CD137 and OX40, and tumor antigens EphA2, Nectin-4 and programmed death ligand 1. The CD137 and OX40 Bicycles were chemically conjugated to tumor antigen Bicycles with different linkers and stoichiometric ratios of binders to obtain a library of low molecular weight TICAs (MW <8 kDa). The TICAs were evaluated in a suite of in vitro and in vivo assays to characterize their pharmacology and mechanism of action. RESULTS: Linking Bicycles against costimulatory receptors (e.g., CD137) to Bicycles against tumor antigens (e.g., EphA2) created potent agonists that activated the receptors selectively in the presence of tumor cells expressing these antigens. An EphA2/CD137 TICA (BCY12491) efficiently costimulated human peripheral blood mononuclear cells in vitro in the presence of EphA2 expressing tumor cell lines as measured by the increased secretion of interferon γ and interleukin-2. Treatment of C57/Bl6 mice transgenic for the human CD137 extracellular domain (huCD137) bearing EphA2-expressing MC38 tumors with BCY12491 resulted in the infiltration of CD8+ T cells, elimination of tumors and generation of immunological memory. BCY12491 was cleared quickly from the circulation (plasma t1/2 in mice of 1-2 hr), yet intermittent dosing proved effective. CONCLUSION: Tumor target-dependent CD137 agonism using a novel chemical approach (TICAs) afforded elimination of tumors with only intermittent dosing suggesting potential for a wide therapeutic index in humans. This work unlocks a new path to effective cancer immunotherapy via agonism of TNF superfamily receptors.


Assuntos
Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Receptor EphA2/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Células A549 , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Células HT29 , Humanos , Células Jurkat , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Células PC-3 , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores OX40/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725211

RESUMO

BACKGROUND: CD137 (4-1BB) is an immune costimulatory receptor with high therapeutic potential in cancer. We are creating tumor target-dependent CD137 agonists using a novel chemical approach based on fully synthetic constrained bicyclic peptide (Bicycle®) technology. Nectin-4 is overexpressed in multiple human cancers that may benefit from CD137 agonism. To this end, we have developed BT7480, a novel, first-in-class, Nectin-4/CD137 Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™). METHODS: Nectin-4 and CD137 co-expression analyses in primary human cancer samples was performed. Chemical conjugation of two CD137 Bicycles to a Nectin-4 Bicycle led to BT7480, which was then evaluated using a suite of in vitro and in vivo assays to characterize its pharmacology and mechanism of action. RESULTS: Transcriptional profiling revealed that Nectin-4 and CD137 were co-expressed in a variety of human cancers with high unmet need and spatial proteomic imaging found CD137-expressing immune cells were deeply penetrant within the tumor near Nectin-4-expressing cancer cells. BT7480 binds potently, specifically, and simultaneously to Nectin-4 and CD137. In co-cultures of human peripheral blood mononuclear cells and tumor cells, this co-ligation causes robust Nectin-4-dependent CD137 agonism that is more potent than an anti-CD137 antibody agonist. Treatment of immunocompetent mice bearing Nectin-4-expressing tumors with BT7480 elicited a profound reprogramming of the tumor immune microenvironment including an early and rapid myeloid cell activation that precedes T cell infiltration and upregulation of cytotoxicity-related genes. BT7480 induces complete tumor regressions and resistance to tumor re-challenge. Importantly, antitumor activity is not dependent on continuous high drug levels in the plasma since a once weekly dosing cycle provides maximum antitumor activity despite minimal drug remaining in the plasma after day 2. BT7480 appears well tolerated in both rats and non-human primates at doses far greater than those expected to be clinically relevant, including absence of the hepatic toxicity observed with non-targeted CD137 agonists. CONCLUSION: BT7480 is a highly potent Nectin-4-dependent CD137 agonist that produces complete regressions and antitumor immunity with only intermittent drug exposure in syngeneic mouse tumor models and is well tolerated in preclinical safety species. This work supports the clinical investigation of BT7480 for the treatment of cancer in humans.


Assuntos
Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Humanos , Camundongos , Neoplasias/imunologia , Ratos , Microambiente Tumoral
7.
J Neurosci Methods ; 175(1): 79-87, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18765253

RESUMO

Subcutaneous administration of cocaine yields a longer duration of action than administration via the intraperitoneal or intravenous routes. However, cocaine is a powerful vasoconstrictor, and thus injection of this drug at a single subcutaneous locus entails significant risk of necrotic skin lesions. This paper introduces a new method for subcutaneous administration of cocaine that reduces the probability of dermonecrosis by dispersing the drug under a large area of skin. Two experiments were conducted to evaluate the new method. In the first, changes in dopamine tone in the nucleus accumbens were measured by means of microdialysis during prolonged subcutaneous infusions of cocaine. The dopamine concentration attained a fairly stable, elevated level, suggesting that absorption, distribution, and excretion of the drug approached steady state. In a second experiment, performance for rewarding electrical stimulation was measured during repeated prolonged infusions of cocaine. The pulse frequency required to sustain responding was decreased by the drug, in a manner that was stable both within and across test sessions. Thus, the new method is appropriate for studies requiring stable neurochemical and behavioral conditions during repeated long test sessions, high rates of drug delivery and alternation between administration of the drug and the vehicle.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Injeções Subcutâneas/métodos , Núcleo Accumbens/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Cromatografia Líquida de Alta Pressão/métodos , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Injeções Subcutâneas/instrumentação , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Recompensa , Autoadministração/métodos , Fatores de Tempo
8.
Oncotarget ; 9(60): 31572-31589, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167080

RESUMO

CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1-MAP kinase-mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.

9.
Cancer Discov ; 8(2): 216-233, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101163

RESUMO

Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects in vivo, due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel ex vivo organotypic tumor spheroid culture system and in multiple in vivo murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies.Significance: Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. Cancer Discov; 8(2); 216-33. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Jenkins et al., p. 196This article is highlighted in the In This Issue feature, p. 127.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Behav Neurosci ; 121(5): 887-95, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17907821

RESUMO

Unpredicted rewards trigger more vigorous phasic responses in midbrain dopamine (DA) neurons than predicted rewards. However, recent evidence suggests that reward predictability may fail to influence DA signaling over longer scales: In rats passively receiving rewarding electrical brain stimulation, the concentration of DA in dialysate obtained from nucleus accumbens probes was similar regardless of whether reward onset was predictable (G. Hernandez et al., 2006). The present experiment followed up on these findings by requiring the rats to work for the rewarding stimulation, thus confirming whether they indeed learned the timing and predictability of reward delivery. Performance under fixed-interval and variable-interval schedules was compared, and DA levels in the nucleus accumbens were measured by means of in vivo microdialysis. The observed patterns of operant responding indicate that the rats working under the fixed-interval schedule learned to predict the time of reward availability, whereas the rats working under the variable-interval schedule did not. Nonetheless, indistinguishable changes in DA concentration were observed in the 2 groups. Thus, reward predictability had no discernable effect on a measure believed to track the slower components of DA signaling.


Assuntos
Dopamina/fisiologia , Recompensa , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Dopamina/metabolismo , Estimulação Elétrica , Eletrodos , Ácido Homovanílico/metabolismo , Masculino , Feixe Prosencefálico Mediano/metabolismo , Feixe Prosencefálico Mediano/fisiologia , Microdiálise , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Ratos , Ratos Long-Evans , Esquema de Reforço , Autoestimulação , Transdução de Sinais/fisiologia
11.
Cancer Biol Ther ; 16(10): 1535-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176330

RESUMO

The clinical use of EGFR-targeted therapy, in triple negative breast cancer patients, has been limited by the development of resistance to these drugs. Although activated signaling molecules contribute to this process, the molecular mechanisms remain relatively unknown. We have previously reported that the small GTPase ADP-Ribosylation Factor 1 (ARF1) is highly expressed in invasive breast cancer cells and acts as a molecular switch to activate EGF-mediated responses. In this study, we aimed at defining whether the high expression of ARF1 limits sensitivity of these tumor cells to EGFR inhibitors, such as gefitinib. Here, we show that the knock down of ARF1 expression or activity decreased the dose and latency time required by tyrosine kinase inhibitors to induce cell death. This may be explained by the observation that the depletion of ARF1 suppressed gefitinib-mediated activation of key mediators of survival such as ERK1/2, AKT and Src, while enhancing cascades leading to apoptosis such as the p38MAPK and JNK pathways, modifying the Bax/Bcl2 ratio and cytochrome c release. In addition, inhibiting ARF1 expression and activation also results in an increase in gefitinib-mediated EGFR internalization and degradation further limiting the ability of this receptor to promote its effects. Interestingly, we observed that gefitinib treatment resulted in the enhanced activation of ARF1 by promoting its recruitment to the receptor AXL, an important mediator of EGFR inhibition suggesting that ARF1 may promote its pro-survival effects by coupling to alternative mitogenic receptors in conditions where the EGFR is inhibited. Together our results uncover a new role for ARF1 in mediating the sensitivity to EGFR inhibition and thus suggest that limiting the activation of this GTPase could improve the therapeutic efficacy of EGFR inhibitors.


Assuntos
Fator 1 de Ribosilação do ADP/genética , GTP Fosfo-Hidrolases/genética , Genes erbB-1/genética , Proliferação de Células , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transfecção
12.
PLoS One ; 7(4): e34888, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514687

RESUMO

Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone.


Assuntos
Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Animais , Linhagem Celular , Proteínas Contráteis/genética , Citocinese/genética , Drosophila , Proteínas de Drosophila/metabolismo , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/genética , Interferência de RNA
13.
Mol Cell Biol ; 29(10): 2505-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19273609

RESUMO

Characterizing mechanisms regulating mammary cell growth and differentiation is vital, as they may contribute to breast carcinogenesis. Here, we examine a cross talk mechanism(s) downstream of prolactin (PRL), a primary differentiation hormone, and epidermal growth factor (EGF), an important proliferative factor, in mammary epithelial cell growth and differentiation. Our data indicate that EGF exerts inhibitory effects on PRL-induced cellular differentiation by interfering with Stat5a-mediated gene expression independent of the PRL-proximal signaling cascade. Additionally, our data show that PRL is a potent inhibitor of EGF-induced cell proliferation. We identify tyrosine phosphorylation of the growth factor receptor-bound protein 2 (Grb2) as a critical mechanism by which PRL antagonizes EGF-induced cell proliferation by attenuating the activation of the Ras/mitogen-activated protein kinase (MAPK) pathway. Together, our results define a novel negative cross-regulation between PRL and EGF involving the Jak2/Stat5a and Ras/MAPK pathways through tyrosine phosphorylation of Grb2.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/fisiologia , Proteína Adaptadora GRB2/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Glândulas Mamárias Humanas/citologia , Prolactina/metabolismo , Animais , Neoplasias da Mama/metabolismo , Comunicação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Células Epiteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Proteína Adaptadora GRB2/genética , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Glândulas Mamárias Humanas/fisiologia , Fosforilação , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tirosina/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
14.
J Biol Chem ; 283(3): 1293-1307, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18024957

RESUMO

Both the transforming growth factor-beta (TGFbeta)/Smad and the prolactin/JAK/STAT pathway are critical to the proper development, maintenance, and function of the mammary epithelial tissue. Interestingly, opposing physiological effects between these two signaling pathways are prominent in the regulation of mammary gland development. However, the exact nature of the biological network existing between the Smad and STAT signal transduction pathways has remained elusive. We identified a novel regulatory cross-talk mechanism by which TGFbeta-induced Smad signaling acts to antagonize prolactin-mediated JAK/STAT signaling and expression of target genes. Furthermore, we found activin, another member of the TGFbeta family, to also efficiently block STAT5 signaling and beta-casein expression in mammary epithelial cells. Our results indicate that ligand-induced activation of Smad2, -3, and -4 by activin and TGFbeta leads to a direct inhibition of STAT5 transactivation and STAT5-mediated transcription of the downstream target genes, beta-casein and cyclin D1, thereby blocking vital processes for mammary gland growth and differentiation. Finally, we unveiled the mechanism by which these two signaling cascades antagonize their effects, and we found that activated Smads inhibit STAT5 association with its co-activator CREB-binding protein, thus blocking STAT5 transactivation of its target genes and leading to inhibition of mammary gland differentiation and lactation.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Transcrição Gênica , Ativinas/metabolismo , Animais , Caseínas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclina D1/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/enzimologia , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Fosforilação/efeitos dos fármacos , Prolactina/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Termodinâmica , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA