Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 145(20): 1524-1533, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389749

RESUMO

BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do QT Longo , Eletrocardiografia , Heterozigoto , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Herança Multifatorial , Sequenciamento Completo do Genoma
2.
J Mol Cell Cardiol ; 166: 23-35, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114252

RESUMO

Atrial fibrillation (AF) affects over 1% of the population and is a leading cause of stroke and heart failure in the elderly. A feared side effect of sodium channel blocker therapy, ventricular pro-arrhythmia, appears to be relatively rare in patients with AF. The biophysical reasons for this relative safety of sodium blockers are not known. Our data demonstrates intrinsic differences between atrial and ventricular cardiac voltage-gated sodium currents (INa), leading to reduced maximum upstroke velocity of action potential and slower conduction, in left atria compared to ventricle. Reduced atrial INa is only detected at physiological membrane potentials and is driven by alterations in sodium channel biophysical properties and not by NaV1.5 protein expression. Flecainide displayed greater inhibition of atrial INa, greater reduction of maximum upstroke velocity of action potential, and slowed conduction in atrial cells and tissue. Our work highlights differences in biophysical properties of sodium channels in left atria and ventricles and their response to flecainide. These differences can explain the relative safety of sodium channel blocker therapy in patients with atrial fibrillation.


Assuntos
Fibrilação Atrial , Flecainida , Potenciais de Ação , Idoso , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/metabolismo , Flecainida/metabolismo , Flecainida/farmacologia , Flecainida/uso terapêutico , Átrios do Coração/metabolismo , Humanos , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
3.
Circ Res ; 127(1): 34-50, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32717170

RESUMO

Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.


Assuntos
Fibrilação Atrial/genética , Epigênese Genética , Redes Reguladoras de Genes , Animais , Fibrilação Atrial/metabolismo , Loci Gênicos , Humanos , Transcriptoma
4.
Circ Res ; 126(2): 200-209, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31691645

RESUMO

RATIONALE: Genome-wide association studies have identified over 100 genetic loci for atrial fibrillation (AF); recent work described an association between loss-of-function (LOF) variants in TTN and early-onset AF. OBJECTIVE: We sought to determine the contribution of rare and common genetic variation to AF risk in the general population. METHODS: The UK Biobank is a population-based study of 500 000 individuals including a subset with genome-wide genotyping and exome sequencing. In this case-control study, we included AF cases and controls of genetically determined white-European ancestry; analyses were performed using a logistic mixed-effects model adjusting for age, sex, the first 4 principal components of ancestry, empirical relationships, and case-control imbalance. An exome-wide, gene-based burden analysis was performed to examine the relationship between AF and rare, high-confidence LOF variants in genes with ≥10 LOF carriers. A polygenic risk score for AF was estimated using the LDpred algorithm. We then compared the contribution of AF polygenic risk score and LOF variants to AF risk. RESULTS: The study included 1546 AF cases and 41 593 controls. In an analysis of 9099 genes with sufficient LOF variant carriers, a significant association between AF and rare LOF variants was observed in a single gene, TTN (odds ratio, 2.71, P=2.50×10-8). The association with AF was more significant (odds ratio, 6.15, P=3.26×10-14) when restricting to LOF variants located in exons highly expressed in cardiac tissue (TTNLOF). Overall, 0.44% of individuals carried TTNLOF variants, of whom 14% had AF. Among individuals in the highest 0.44% of the AF polygenic risk score only 9.3% had AF. In contrast, the AF polygenic risk score explained 4.7% of the variance in AF susceptibility, while TTNLOF variants only accounted for 0.2%. CONCLUSIONS: Both monogenic and polygenic factors contribute to AF risk in the general population. While rare TTNLOF variants confer a substantial AF penetrance, the additive effect of many common variants explains a larger proportion of genetic susceptibility to AF.


Assuntos
Fibrilação Atrial/genética , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Idoso , Conectina/genética , Bases de Dados Genéticas , Exoma , Feminino , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Penetrância
5.
Proc Natl Acad Sci U S A ; 116(45): 22692-22698, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636200

RESUMO

Genome-wide association studies found that increased risk for atrial fibrillation (AF), the most common human heart arrhythmia, is associated with noncoding sequence variants located in proximity to PITX2 Cardiomyocyte-specific epigenomic and comparative genomics uncovered 2 AF-associated enhancers neighboring PITX2 with varying conservation in mice. Chromosome conformation capture experiments in mice revealed that the Pitx2c promoter directly contacted the AF-associated enhancer regions. CRISPR/Cas9-mediated deletion of a 20-kb topologically engaged enhancer led to reduced Pitx2c transcription and AF predisposition. Allele-specific chromatin immunoprecipitation sequencing on hybrid heterozygous enhancer knockout mice revealed that long-range interaction of an AF-associated region with the Pitx2c promoter was required for maintenance of the Pitx2c promoter chromatin state. Long-range looping was mediated by CCCTC-binding factor (CTCF), since genetic disruption of the intronic CTCF-binding site caused reduced Pitx2c expression, AF predisposition, and diminished active chromatin marks on Pitx2 AF risk variants located at 4q25 reside in genomic regions possessing long-range transcriptional regulatory functions directed at PITX2.


Assuntos
Fibrilação Atrial/genética , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Epigênese Genética , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Knockout , Proteína Homeobox PITX2
6.
Circulation ; 142(5): 466-482, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32403949

RESUMO

BACKGROUND: The human heart requires a complex ensemble of specialized cell types to perform its essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase our understanding of cardiac homeostasis and pathology. As recent advances in low-input RNA sequencing have allowed definitions of cellular transcriptomes at single-cell resolution at scale, we have applied these approaches to assess the cellular and transcriptional diversity of the nonfailing human heart. METHODS: Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing with samples from 7 human donors, selected for their absence of overt cardiac disease. Individual nuclear transcriptomes were then clustered based on transcriptional profiles of highly variable genes. These clusters were used as the basis for between-chamber and between-sex differential gene expression analyses and intersection with genetic and pharmacologic data. RESULTS: We sequenced the transcriptomes of 287 269 single cardiac nuclei, revealing 9 major cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include 2 distinct groups of resident macrophages, 4 endothelial subtypes, and 2 fibroblast subsets. Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in cardiomyocyte transcriptional programs but also in subtypes involved in extracellular matrix remodeling and vascularization. Using genetic association data, we identified strong enrichment for the role of cell subtypes in cardiac traits and diseases. Intersection of our data set with genes on cardiac clinical testing panels and the druggable genome reveals striking patterns of cellular specificity. CONCLUSIONS: Using large-scale single nuclei RNA sequencing, we defined the transcriptional and cellular diversity in the normal human heart. Our identification of discrete cell subtypes and differentially expressed genes within the heart will ultimately facilitate the development of new therapeutics for cardiovascular diseases.


Assuntos
Miocárdio/citologia , Transcrição Gênica , Adipócitos/metabolismo , Adulto , Idoso , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Células Endoteliais/classificação , Células Endoteliais/metabolismo , Fibroblastos/classificação , Fibroblastos/metabolismo , Ontologia Genética , Coração/inervação , Átrios do Coração/citologia , Cardiopatias/tratamento farmacológico , Ventrículos do Coração/citologia , Homeostase , Humanos , Subpopulações de Linfócitos/metabolismo , Macrófagos/classificação , Macrófagos/metabolismo , Técnicas Analíticas Microfluídicas , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 113(9): E1216-25, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884197

RESUMO

Calmodulin (CaM) is a Ca(2+)-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca(2+) concentration into cellular signals by binding to a wide range of target proteins in a Ca(2+)-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca(2+)-binding sites, called EF-hands, may contribute to CaM's functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca(2+) signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/química , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
8.
Cell Rep ; 42(2): 112086, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790929

RESUMO

Ischemic cardiomyopathy (ICM) is the leading cause of heart failure worldwide, yet the cellular and molecular signature of this disease is largely unclear. Using single-nucleus RNA sequencing (snRNA-seq) and integrated computational analyses, we profile the transcriptomes of over 99,000 human cardiac nuclei from the non-infarct region of the left ventricle of 7 ICM transplant recipients and 8 non-failing (NF) controls. We find the cellular composition of the ischemic heart is significantly altered, with decreased cardiomyocytes and increased proportions of lymphatic, angiogenic, and arterial endothelial cells in patients with ICM. We show that there is increased LAMININ signaling from endothelial cells to other cell types in ICM compared with NF. Finally, we find that the transcriptional changes that occur in ICM are similar to those in hypertrophic and dilated cardiomyopathies and that the mining of these combined datasets can identify druggable genes that could be used to target end-stage heart failure.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Células Endoteliais/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Análise de Sequência de RNA , Cardiomiopatias/genética
9.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014050

RESUMO

Background: Despite the critical role of the cardiovascular system, our understanding of its cellular and transcriptional diversity remains limited. We therefore sought to characterize the cellular composition, phenotypes, molecular pathways, and communication networks between cell types at the tissue and sub-tissue level across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We obtained high quality tissue samples under controlled conditions that reveal a level of cellular detail so far inaccessible in human studies. Methods and Results: We performed single nucleus RNA-sequencing in 78 samples in 10 distinct regions including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins (PV), which produced an aggregate map of 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, including a number of rare cell types such as PV cardiomyocytes and non-myelinating Schwann cells (NMSCs), and unique groups of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts (FBs), which gave rise to a detailed cell type distribution across tissues. We demonstrated differences in the cellular composition across different cardiac regions and tissue-specific differences in transcription for each cell type, highlighting the molecular diversity and complex tissue architecture of the cardiovascular system. Specifically, we observed great transcriptional heterogeneities among ECs and FBs. Importantly, several cell subtypes had a unique regional localization such as a subtype of VSMCs enriched in the large vasculature. We found the cellular makeup of PV tissue is closer to heart tissue than to the large arteries. We further explored the ligand-receptor repertoire across cell clusters and tissues, and observed tissue-enriched cellular communication networks, including heightened Nppa - Npr1/2/3 signaling in the sinoatrial node. Conclusions: Through a large single nucleus sequencing effort encompassing over 500,000 nuclei, we broadened our understanding of cellular transcription in the healthy cardiovascular system. The existence of tissue-restricted cellular phenotypes suggests regional regulation of cardiovascular physiology. The overall conservation in gene expression and molecular pathways across rat and human cell types, together with our detailed transcriptional characterization of each cell type, offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.

10.
Nat Commun ; 14(1): 1558, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944631

RESUMO

Left ventricular mass is a risk marker for cardiovascular events, and may indicate an underlying cardiomyopathy. Cardiac magnetic resonance is the gold-standard for left ventricular mass estimation, but is challenging to obtain at scale. Here, we use deep learning to enable genome-wide association study of cardiac magnetic resonance-derived left ventricular mass indexed to body surface area within 43,230 UK Biobank participants. We identify 12 genome-wide associations (1 known at TTN and 11 novel for left ventricular mass), implicating genes previously associated with cardiac contractility and cardiomyopathy. Cardiac magnetic resonance-derived indexed left ventricular mass is associated with incident dilated and hypertrophic cardiomyopathies, and implantable cardioverter-defibrillator implant. An indexed left ventricular mass polygenic risk score ≥90th percentile is also associated with incident implantable cardioverter-defibrillator implant in separate UK Biobank (hazard ratio 1.22, 95% CI 1.05-1.44) and Mass General Brigham (hazard ratio 1.75, 95% CI 1.12-2.74) samples. Here, we perform a genome-wide association study of cardiac magnetic resonance-derived indexed left ventricular mass to identify 11 novel variants and demonstrate that cardiac magnetic resonance-derived and genetically predicted indexed left ventricular mass are associated with incident cardiomyopathy.


Assuntos
Cardiomiopatias , Aprendizado Profundo , Humanos , Estudo de Associação Genômica Ampla , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
11.
Nat Genet ; 54(3): 240-250, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35177841

RESUMO

Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic component, our understanding of these diseases remains incomplete. Here, we analyzed the contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based associations, with broad replication of novel signals in Geisinger MyCode. There was a striking risk associated with mutations in known Mendelian disease genes, including MYBPC3, LDLR, GCK, PKD1 and TTN. Many genes showed independent convergence of rare and common variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified several large effect associations for height and 18 unique genes associated with blood lipid or glucose levels. Finally, we found that between 1.0% and 2.4% of participants carried rare potentially pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at therapeutics and screening of these common disorders.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Variação Genética/genética , Humanos , Reino Unido
12.
Nat Genet ; 54(1): 40-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837083

RESUMO

Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.


Assuntos
Aorta Torácica/anatomia & histologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adulto , Idoso , Aorta Torácica/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Variação Biológica da População , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Transcriptoma
13.
Nat Commun ; 13(1): 5106, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042188

RESUMO

Accurate and efficient classification of variant pathogenicity is critical for research and clinical care. Using data from three large studies, we demonstrate that population-based associations between rare variants and quantitative endophenotypes for three monogenic diseases (low-density-lipoprotein cholesterol for familial hypercholesterolemia, electrocardiographic QTc interval for long QT syndrome, and glycosylated hemoglobin for maturity-onset diabetes of the young) provide evidence for variant pathogenicity. Effect sizes are associated with pathogenic ClinVar assertions (P < 0.001 for each trait) and discriminate pathogenic from non-pathogenic variants (area under the curve 0.82-0.84 across endophenotypes). An effect size threshold of ≥ 0.5 times the endophenotype standard deviation nominates up to 35% of rare variants of uncertain significance or not in ClinVar in disease susceptibility genes with pathogenic potential. We propose that variant associations with quantitative endophenotypes for monogenic diseases can provide evidence supporting pathogenicity.


Assuntos
Endofenótipos , Síndrome do QT Longo , Suscetibilidade a Doenças , Humanos , Virulência
14.
Circ Genom Precis Med ; 14(4): e003300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34319147

RESUMO

BACKGROUND: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. METHODS: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). RESULTS: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes (PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10-5). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (P=4×10-25), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. CONCLUSIONS: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.


Assuntos
Morte Súbita Cardíaca/etnologia , Eletrocardiografia , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Síndrome do QT Longo , Feminino , Humanos , Síndrome do QT Longo/etnologia , Síndrome do QT Longo/genética , Masculino , Sequenciamento do Exoma
16.
J Interv Card Electrophysiol ; 45(1): 7-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26497660

RESUMO

PURPOSE: Non-pulmonary vein (non-PV) triggers and left atrial (LA) scars perpetuate atrial fibrillation (AF) and limit the success rate of catheter ablation. In order to understand the genetic basis of these risk factors, we examined the association of selected single nucleotide polymorphisms (SNPs) with scar and non-PV triggers. METHODS: Four hundred AF patients (67 %male, 62±12 years, LA size 45.3±7 mm, 64%non-paroxysmal) undergoing catheter ablation were prospectively enrolled. DNA extractions for16 AF-related SNPS from blood samples were performed of which 371 DNA samples were available for genotyping. Multivariate logistic regression analysis was used for assessing predictive role of individual SNP, and logistic kernel-machine approach was applied to test the cumulative effect of multiple SNPs as a group with non-PV triggers and LA scar. False discovery rate (FDR) was computed for all candidate SNPs to address multiple testing. RESULTS: SNPs rs6599230 and rs6843082 were inversely associated (OR 0.68, p=0.04, and 0.62, p=0.01, respectively) whereas rs1448817 (OR 1.74, p=0.04) and rs7193343 (OR 1.66, p=0.02) predicted higher risk of non-PV triggers. Genotypes for rs6599230 and rs6843082 conferred 51 % reduction in the odds for non-PV triggers (combined OR 0.49, p=0.019), while rs1448817 and rs7193343 demonstrated a combined OR of 1.93, p=0.025. FDR was controlled at 16 % to adjust for multiple testing. For LA scar, inverse association was observed with rs1448817 (OR 0.29, p=0.006), rs17042171 (OR 0.27, p=0.032), rs3807989 (OR 0.54, p=0.017), and rs6843082 (OR 0.56, p=0.009). Two SNPs were associated with increased scar risk: rs17375901 (OR 3.68, p=0.03) and rs7193343 (OR 1.74, p=0.037). For global association of SNPs with left atrial scar FDR was controlled at ≤10 % to adjust for multiple testing. CONCLUSIONS: This study has a strong clinical significance as it provides important insights into the molecular basis of pertinent therapeutic targets. Our findings demonstrate that the presence of certain genetic polymorphisms increases the risk of scar and non-PV triggers in AF patients. Therefore, PVAI alone will not be enough to eliminate the arrhythmia and the operators may need to identify and isolate the non-PV foci to maximize procedural success in patients carrying these risk variants. Clinical trial registration clinicaltrials.gov (NCT01751607).


Assuntos
Fibrilação Atrial/genética , Fibrilação Atrial/cirurgia , Ablação por Cateter/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/genética , Fibrilação Atrial/epidemiologia , Comorbidade , Medicina Baseada em Evidências , Feminino , Estudos de Associação Genética , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Pessoa de Meia-Idade , Prevalência , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Texas/epidemiologia , Resultado do Tratamento
17.
J Gen Physiol ; 134(4): 281-93, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19752189

RESUMO

Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca(2+)-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca(2+). These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca(2+)-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca(2+) affinity than WT CaM.


Assuntos
Calmodulina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Sítios de Ligação , Calmodulina/química , Calmodulina/genética , Motivos EF Hand , Fenômenos Eletrofisiológicos , Indóis/farmacologia , Potenciais da Membrana , Oximas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA