Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Nephrol Hypertens ; 33(2): 174-180, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164877

RESUMO

PURPOSE OF REVIEW: Interleukin 15 (IL-15) is a member of the IL-2 family of common gamma chain receptor cytokines with well described anti-inflammatory, pro-survival and pro-proliferative signaling properties. The cytoprotective role of IL-15 in the kidney is now coming into focus with recent reports of its beneficial actions in various forms of kidney disease. This review will summarize what is currently known about IL-15 signaling in the kidney and highlight recent evidence of its beneficial effects on kidney physiology. RECENT FINDINGS: IL-15 and its heterotrimeric receptor are expressed throughout the kidney. Like all IL-2 family cytokines, IL-15 can activate signaling through the Janus Kinase (JAK)/Signal transducer of activated T-cells (STAT), phosphoinositol-3 kinase (PI-3K)/AKT and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways and recent evidence suggests that STAT5B is an essential transcriptional mediator of prosurvival signaling in glomerular visceral epithelial cells (i.e. podocytes). IL-15 has also been shown to suppress pro-apoptotic signaling in models of acute kidney injury and pro-fibrotic signaling in models of chronic kidney disease. SUMMARY: The cytoprotective properties of IL-15 suggest that it may have potential as a nonimmunosuppresive therapeutic for kidney disease. A novel class of IL-15 immunotherapies has emerged for the treatment cancer and some have demonstrated efficacy in clinical trials. These well tolerated IL-15 agonists could possibly be repurposed for the treatment of kidney disease and warrant further exploration.


Assuntos
Interleucina-15 , Nefropatias , Humanos , Interleucina-2 , Transdução de Sinais , Citocinas , Nefropatias/tratamento farmacológico
2.
Clin Sci (Lond) ; 137(24): 1789-1804, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38051199

RESUMO

Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the ß-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated ß-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine ß-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated ß-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of ß-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the ß-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the ß-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated ß-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.


Assuntos
Hipertensão , Nefropatias , Podócitos , Ratos , Animais , Humanos , Podócitos/metabolismo , Canal de Cátion TRPC6/metabolismo , Cálcio/metabolismo , beta-Arrestinas/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Ratos Endogâmicos Dahl , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Nefropatias/metabolismo , Hipertensão/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/farmacologia
3.
BMC Nephrol ; 24(1): 30, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759756

RESUMO

BACKGROUND: Tobacco exposure has been recognized as a risk factor for cardiovascular disease (CVD) and progression of kidney disease. Patients with proteinuric glomerulopathies are at increased risk for cardiovascular morbidity and mortality. Multiple studies have linked tobacco exposure to CVD and chronic kidney disease, but the relationships between smoking and proteinuric glomerulopathies in adults and children have not been previously explored. METHODS: Data from the Nephrotic Syndrome Study Network (NEPTUNE), a multi-center prospective observational study of participants with proteinuric glomerulopathies, was analyzed. 371 adults and 192 children enrolled in NEPTUNE were included in the analysis. Self-reported tobacco exposure was classified as non-smoker, active smoker, former smoker, or exclusive passive smoker. Baseline serum cotinine levels were measured in a sub-cohort of 178 participants. RESULTS: The prevalence of active smokers, former smokers and exclusive passive smoking among adults at baseline was 14.6%, 29.1% and 4.9%, respectively. Passive smoke exposure was 16.7% among children. Active smoking (reference non-smoking) was significantly associated with greater total cholesterol among adults (ß 17.91 95% CI 0.06, 35.76, p = 0.049) while passive smoking (reference non-smoking) was significantly associated with greater proteinuria over time among children (ß 1.23 95% CI 0.13, 2.33, p = 0.03). Higher cotinine levels were associated with higher baseline eGFR (r = 0.17, p = 0.03). CONCLUSION: Tobacco exposure is associated with greater risk for CVD and worse kidney disease outcomes in adults and children with proteinuric glomerulopathies. Preventive strategies to reduce tobacco exposure may help protect against future cardiovascular and kidney morbidity and mortality in patients with proteinuric glomerulopathies.


Assuntos
Doenças Cardiovasculares , Nefropatias , Poluição por Fumaça de Tabaco , Humanos , Adulto , Criança , Estudos de Coortes , Cotinina , Nicotiana , Poluição por Fumaça de Tabaco/efeitos adversos , Netuno , Nefropatias/induzido quimicamente
4.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894725

RESUMO

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
5.
J Am Soc Nephrol ; 29(8): 2110-2122, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30002222

RESUMO

BACKGROUND: We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. METHODS: We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT ) or ANLNR431C . RESULTS: Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C -expressing podocytes. Inhibition of mTOR, GSK-3ß, Rac1, or calcineurin ameliorated the effects of ANLNR431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. CONCLUSIONS: The ANLNR431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Mutação de Sentido Incorreto , Podócitos/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais , Peixe-Zebra , Proteínas rac1 de Ligação ao GTP/genética
6.
Kidney Int ; 92(2): 283-285, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28709595

RESUMO

Selective modulation of Rho GTPase activity in podocytes recapitulates characteristic features of human nephrosis. Using a mouse model, Robins et al. found that high levels of Rac1 activation in podocytes caused podocyte detachment and glomerulosclerosis. Podocyte Rac1 activity was enhanced in biopsy specimens from patients with nephrosis, and serum from this patient population activated Rac1 in cultured podocytes. These data provide a causal link between podocyte Rac1 activation and human nephrotic diseases.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose , Síndrome Nefrótica , Podócitos , Humanos , Proteínas rac1 de Ligação ao GTP
8.
Pediatr Nephrol ; 31(2): 247-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26408188

RESUMO

BACKGROUND: Primary vesicoureteral reflux (PVUR) is the most common malformation of the kidney and urinary tract, and reflux nephropathy is a major cause of chronic kidney disease in children. Recently, we reported mutations in the tenascin XB gene (TNXB) as a cause of PVUR with joint hypermobility. METHODS: To define the role of rare variants in tenascin genes in the etiology of PVUR, we screened a cohort of patients with familial PVUR (FPVUR) and non-familial PVUR (NFPVUR) for rare missense variants inTNXB and the tenascin C gene (TNC) after excluding mutations in ROBO2 and SOX17. RESULTS: The screening procedure identified 134 individuals from 112 families with PVUR; two families with mutations in ROBO2 were excluded from further analysis. Rare missense variants in TNXB were found in the remaining 110 families, of which 5/55 (9%) families had FPVUR and 2/55 (4%) had NFPVUR. There were no differences in high-grade reflux or renal parenchymal scarring between patients with and without TNXB variants. All patients with TNXB rare variants who were tested exhibited joint hypermobility. Overall we were able to identify causes of FPVUR in 7/57 (12%) families (9% in TNXB and 3% in ROBO2). CONCLUSIONS: In conclusion, the identification of a rare missense variant in TNXB in combination with a positive family history of VUR and joint hypermobility may represent a non-invasive method to diagnose PVUR and warrants further evaluation in other cohorts.


Assuntos
Mutação de Sentido Incorreto , Tenascina/genética , Refluxo Vesicoureteral/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Instabilidade Articular/diagnóstico , Masculino , Mutação , Linhagem
9.
J Am Soc Nephrol ; 26(4): 831-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145932

RESUMO

FSGS is a clinical disorder characterized by focal scarring of the glomerular capillary tuft, podocyte injury, and nephrotic syndrome. Although idiopathic forms of FSGS predominate, recent insights into the molecular and genetic causes of FSGS have enhanced our understanding of disease pathogenesis. Here, we report a novel missense mutation of the transcriptional regulator Wilms' Tumor 1 (WT1) as the cause of nonsyndromic, autosomal dominant FSGS in two Northern European kindreds from the United States. We performed sequential genome-wide linkage analysis and whole-exome sequencing to evaluate participants from family DUK6524. Subsequently, whole-exome sequencing and direct sequencing were performed on proband DNA from family DUK6975. We identified multiple suggestive loci on chromosomes 6, 11, and 13 in family DUK6524 and identified a segregating missense mutation (R458Q) in WT1 isoform D as the cause of FSGS in this family. The identical mutation was found in family DUK6975. The R458Q mutation was not found in 1600 control chromosomes and was predicted as damaging by in silico simulation. We depleted wt1a in zebrafish embryos and observed glomerular injury and filtration defects, both of which were rescued with wild-type but not mutant human WT1D mRNA. Finally, we explored the subcellular mechanism of the mutation in vitro. WT1(R458Q) overexpression significantly downregulated nephrin and synaptopodin expression, promoted apoptosis in HEK293 cells and impaired focal contact formation in podocytes. Taken together, these data suggest that the WT1(R458Q) mutation alters the regulation of podocyte homeostasis and causes nonsyndromic FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas WT1/genética , Adolescente , Adulto , Animais , Movimento Celular , Sobrevivência Celular , Exoma , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ligação Genética , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Masculino , Mutação de Sentido Incorreto , Nefrose/etiologia , Nefrose/metabolismo , Podócitos/fisiologia , Análise de Sequência de DNA , Proteínas WT1/deficiência , Adulto Jovem , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
10.
J Am Soc Nephrol ; 26(7): 1701-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349203

RESUMO

Steroid-sensitive nephrotic syndrome (SSNS) accounts for >80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS.


Assuntos
Predisposição Genética para Doença/epidemiologia , Cadeias alfa de HLA-DQ/genética , Síndrome Nefrótica/epidemiologia , Síndrome Nefrótica/genética , Fosfolipase C gama/genética , Esteroides/uso terapêutico , Distribuição por Idade , Idade de Início , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Incidência , Masculino , Mutação de Sentido Incorreto , Síndrome Nefrótica/tratamento farmacológico , Distribuição por Sexo , Sri Lanka/epidemiologia
11.
Am J Physiol Renal Physiol ; 309(1): F24-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25810439

RESUMO

Nephrotic syndrome (NS) is a clinicopathological entity characterized by proteinuria, hypoalbuminemia, peripheral edema, and hyperlipidemia. It is the most common cause of glomerular disease in children and adults. Although the molecular pathogenesis of NS is not completely understood, data from the study of familial NS suggest that it is a "podocytopathy." Virtually all of the genes mutated in hereditary NS localize to the podocyte or its secreted products and the slit diaphragm. Since the completion of human genome sequence and the advent of next generation sequencing, at least 29 causes of single-gene NS have been identified. However, these findings have not been matched by therapeutic advances owing to suboptimal in vitro and in vivo models for the study of human glomerular disease and podocyte injury phenotypes. Multidisciplinary collaboration between clinicians, geneticists, cell biologists, and molecular physiologists has the potential to overcome this barrier and thereby speed up the translation of genetic findings into improved patient care.


Assuntos
Síndrome Nefrótica/genética , Humanos , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo , Pesquisa Translacional Biomédica
12.
J Am Soc Nephrol ; 25(9): 1991-2002, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676636

RESUMO

FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Animais , Movimento Celular/genética , Sequência Conservada , Proteínas Contráteis/genética , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Exoma , Feminino , Técnicas de Silenciamento de Genes , Barreira de Filtração Glomerular/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Mutantes/genética , Linhagem , Podócitos/metabolismo , Homologia de Sequência de Aminoácidos , Regulação para Cima , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Am J Physiol Renal Physiol ; 306(12): F1442-50, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24740790

RESUMO

The emerging role of the transient receptor potential cation channel isotype 6 (TRPC6) as a central contributor to various pathological processes affecting podocytes has generated interest in the development of therapeutics to modulate its function. Recent insights into the regulation of TRPC6 have revealed PKG as a potent negative modulator of TRPC6 conductance and associated signaling via its phosphorylation at two highly conserved amino acid residues: Thr(69)/Thr(70) (Thr(69) in mice and Thr(70) in humans) and Ser(321)/Ser(322) (Ser(321) in mice and Ser(322) in humans). Here, we tested the role of PKG in modulating TRPC6-dependent responses in primary and conditionally immortalized mouse podocytes. TRPC6 was phosphorylated at Thr(69) in nonstimulated podocytes, but this declined upon ANG II stimulation or overexpression of constitutively active calcineurin phosphatase. ANG II induced podocyte motility in an in vitro wound assay, and this was reduced 30-60% in cells overexpressing a phosphomimetic mutant TRPC6 (TRPC6T70E/S322E) or activated PKG (P < 0.05). Pretreatment of podocytes with the PKG agonists S-nitroso-N-acetyl-dl-penicillamine (nitric oxide donor), 8-bromo-cGMP, Bay 41-2772 (soluble guanylate cyclase activator), or phosphodiesterase 5 (PDE5) inhibitor 4-{[3',4'-(methylenedioxy)benzyl]amino}[7]-6-methoxyquinazoline attenuated ANG II-induced Thr(69) dephosphorylation and also inhibited TRPC6-dependent podocyte motility by 30-60%. These data reveal that PKG activation strategies, including PDE5 inhibition, ameliorate ANG II-induced podocyte dysmotility by targeting TRPC6 in podocytes, highlighting the potential therapeutic utility of these approaches to treat hyperactive TRPC6-dependent glomerular disease.


Assuntos
Angiotensina II/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Podócitos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos , Modelos Animais , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Podócitos/citologia , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6
14.
Kidney Int ; 86(6): 1253-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25229338

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Glomerulosclerose Segmentar e Focal/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Exoma , Feminino , Testes Genéticos , Genótipo , Membrana Basal Glomerular/ultraestrutura , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/patologia , Perda Auditiva/genética , Hematúria/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fenótipo , Podócitos/ultraestrutura , Proteinúria/etiologia , Adulto Jovem
15.
J Am Soc Nephrol ; 24(8): 1313-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620400

RESUMO

Primary vesicoureteral reflux (VUR) is the most common congenital anomaly of the kidney and the urinary tract, and it is a major risk factor for pyelonephritic scarring and CKD in children. Although twin studies support the heritability of VUR, specific genetic causes remain elusive. We performed a sequential genome-wide linkage study and whole-exome sequencing in a family with hereditary VUR. We obtained a significant multipoint parametric logarithm of odds score of 3.3 on chromosome 6p, and whole-exome sequencing identified a deleterious heterozygous mutation (T3257I) in the gene encoding tenascin XB (TNXB in 6p21.3). This mutation segregated with disease in the affected family as well as with a pathogenic G1331R change in another family. Fibroblast cell lines carrying the T3257I mutation exhibited a reduction in both cell motility and phosphorylated focal adhesion kinase expression, suggesting a defect in the focal adhesions that link the cell cytoplasm to the extracellular matrix. Immunohistochemical studies revealed that the human uroepithelial lining of the ureterovesical junction expresses TNXB, suggesting that TNXB may be important for generating tensile forces that close the ureterovesical junction during voiding. Taken together, these results suggest that mutations in TNXB can cause hereditary VUR.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Rim/patologia , Tenascina/genética , Sistema Urinário/anormalidades , Refluxo Vesicoureteral/genética , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Rim/metabolismo , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Tenascina/metabolismo , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
16.
Biomedicines ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672094

RESUMO

Interleukins are a family of 40 bioactive peptides that act through cell surface receptors to induce a variety of intracellular responses. While interleukins are most commonly associated with destructive, pro-inflammatory signaling in cells, some also play a role in promoting cellular resilience and survival. This review will highlight recent evidence of the cytoprotective actions of the interleukin 1 receptor (IL-1R)- and common gamma chain receptor (IL-Rγc)-signaling cytokines in nephrotic syndrome (NS). NS results from the injury or loss of glomerular visceral epithelial cells (i.e., podocytes). Although the causes of podocyte dysfunction vary, it is clear that pro-inflammatory cytokines play a significant role in regulating the propagation, duration and severity of disease. Pro-inflammatory cytokines signaling through IL-1R and IL-Rγc have been shown to exert anti-apoptotic effects in podocytes through the phosphoinositol-3-kinase (PI-3K)/AKT pathway, highlighting the potential utility of IL-1R- and IL-Rγc-signaling interleukins for the treatment of podocytopathy in NS. The paradoxical role of interleukins as drivers and mitigators of podocyte injury is complex and ill-defined. Emerging evidence of the cytoprotective role of some interleukins in NS highlights the urgent need for a nuanced understanding of their pro-survival benefits and reveals their potential as podocyte-sparing therapeutics for NS.

17.
J Exp Med ; 203(5): 1235-47, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16636132

RESUMO

Emerging evidence suggests that both human stem cells and mature stromal cells can play an important role in the development and growth of human malignancies. In contrast to these tumor-promoting properties, we observed that in an in vivo model of Kaposi's sarcoma (KS), intravenously (i.v.) injected human mesenchymal stem cells (MSCs) home to sites of tumorigenesis and potently inhibit tumor growth. We further show that human MSCs can inhibit the in vitro activation of the Akt protein kinase within some but not all tumor and primary cell lines. The inhibition of Akt activity requires the MSCs to make direct cell-cell contact and can be inhibited by a neutralizing antibody against E-cadherin. We further demonstrate that in vivo, Akt activation within KS cells is potently down-regulated in areas adjacent to MSC infiltration. Finally, the in vivo tumor-suppressive effects of MSCs correlates with their ability to inhibit target cell Akt activity, and KS tumors engineered to express a constitutively activated Akt construct are no longer sensitive to i.v. MSC administration. These results suggest that in contrast to other stem cells or normal stromal cells, MSCs possess intrinsic antineoplastic properties and that this stem cell population might be of particular utility for treating those human malignancies characterized by dysregulated Akt.


Assuntos
Efeito Enxerto vs Tumor/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Sarcoma de Kaposi/imunologia , Animais , Modelos Animais de Doenças , Ativação Enzimática/imunologia , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Proteína Oncogênica v-akt/imunologia , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/terapia , Células Estromais/imunologia , Células Estromais/transplante , Transplante Heterólogo , Células Tumorais Cultivadas
18.
Kidney Int ; 81(1): 94-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21866090

RESUMO

Focal and segmental glomerulosclerosis (FSGS) is a major cause of end-stage kidney disease. Recent advances in molecular genetics show that defects in the podocyte play a major role in its pathogenesis and mutations in inverted formin 2 (INF2) cause autosomal dominant FSGS. In order to delineate the role of INF2 mutations in familial and sporadic FSGS, we sought to identify variants in a large cohort of patients with FSGS. A secondary objective was to define an approach for genetic screening in families with autosomal dominant disease. A total of 248 individuals were identified with FSGS, of whom 31 had idiopathic disease. The remaining patients clustered into 64 families encompassing 15 from autosomal recessive and 49 from autosomal dominant kindreds. There were missense mutations in 8 of the 49 families with autosomal dominant disease. Three of the detected variants were novel and all mutations were confined to exon 4 of INF2, a regulatory region responsible for 90% of all changes reported in FSGS due to INF2 mutations. Thus, in our series, INF2 mutations were responsible for 16% of all cases of autosomal dominant FSGS, with these mutations clustered in exon 4. Hence, screening for these mutations may represent a rapid, non-invasive and cost-effective method for the diagnosis of autosomal dominant FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Éxons , Feminino , Forminas , Genes Dominantes , Genes Recessivos , Testes Genéticos , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Lactente , Masculino , Proteínas dos Microfilamentos/química , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Adulto Jovem
20.
Mol Ther ; 19(11): 1961-70, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21730973

RESUMO

Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg/dl) was prevented for >6 months by the dsAAV2/7, dsAAV2/8, and dsAAV2/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2/7 and dsAAV2/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2/9 vector. Hepatorenal correction in G6pase (-/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/mortalidade , Humanos , Hipoglicemia/genética , Hipoglicemia/terapia , Estimativa de Kaplan-Meier , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA