Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
J Antimicrob Chemother ; 79(5): 1014-1018, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530861

RESUMO

BACKGROUND: The Acinetobacter baumannii isolate called SMAL, previously used to determine the structures of capsular polysaccharide and lipooligosaccharide, was recovered in Pavia, Italy in 2002 among the collection of aminoglycoside-resistant isolates designated as SMAL type. This type was later called the Italian clone, then ST78. ST78 isolates are now widely distributed. OBJECTIVES: To establish the resistance gene complement and the location and structure of acquired resistance regions in early members of the Italian/ST78 clone. METHODS: The draft genome of SMAL2002 was assembled from Illumina MiSeq reads. Contigs containing resistance genes were joined and located in the chromosome using PCR with custom primers. The resistance profile was determined using disc diffusion. RESULTS: SMAL2002 is an ST78A isolate and includes three aminoglycoside resistance genes, aadB (gentamicin, kanamycin, tobramycin) aphA1 (kanamycin, neomycin) and aac(6')-Ian (amikacin, kanamycin, tobramycin). The aadB gene cassette is incorporated at a secondary site in a relative of the aphA1-containing, IS26-bounded pseudo-compound transposon, PTn6020. The aac(6')-Ian gene is in an adjacent IS26-bounded structure that includes sul2 (sulphonamide) and floR (florfenicol) resistance genes. The two pseudo-compound transposons overlap and are in the chromosomal hutU gene flanked by an 8 bp target site duplication. Although aac(6')-Ian was not noticed previously, the same genes and structures were found in several available draft genomes of early ST78A isolates. CONCLUSIONS: This study highlights the importance of correlating resistance profiles with resistance gene content. The location of acquired resistance genes in the SMAL2002 chromosome represents the original location in the ST78A lineage of ST78.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Itália , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana/genética , Humanos , Ilhas Genômicas/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Análise de Sequência de DNA , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia , Reação em Cadeia da Polimerase , Genoma Bacteriano , DNA Bacteriano/genética
2.
J Antimicrob Chemother ; 79(7): 1569-1576, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742708

RESUMO

BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Tailândia , Integrons/genética , Plasmídeos/genética , Amicacina/farmacologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Proteínas de Bactérias/genética , Tobramicina/farmacologia , Acetiltransferases/genética , Genoma Bacteriano
3.
Plasmid ; 129-130: 102722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631562

RESUMO

The predominant type of plasmids found in Acinetobacter species encode a Rep_3 initiation protein and many of these carry their accessory genes in dif modules. Here, available sequences of the 14 members of the group of Rep_3 plasmids typed as R3-T33, using a threshold of 95% identity in the repA gene, were compiled and compared. These plasmids were from various Acinetobacter species. The pdif sites were identified allowing the backbone and dif modules to be defined. As for other Rep_3 plasmids carrying dif modules, orfX encoding a protein of unknown function was found downstream of repA followed by a pdif site in the orientation XerC binding site-spacer-XerD binding site. Most backbones (n = 12) also included mobA and mobC genes but the two plasmids with the most diverged repA and orfX genes had different backbone contents. Although the gene content of the plasmid backbone was largely conserved, extensive recombinational exchange was detected and only two small groups carried identical or nearly identical backbones. Individual plasmids were associated with 1 to 13 dif modules. Many different dif modules were identified, including ones containing antibiotic or chromate resistance genes and several toxin/antitoxin gene pairs. In some cases, modules carrying the same genes were significantly diverged. Generally, the orientation of the pdif sites alternated such that C modules (XerC binding sites internal) alternated with D modules (XerD binding sites internal). However, fusions of two dif modules via mutational inactivation or loss of a pdif site were also detected.


Assuntos
Acinetobacter , Plasmídeos , Acinetobacter/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/genética , Sequência de Bases , Filogenia , Transativadores/genética , Transativadores/metabolismo , DNA Helicases
4.
Plasmid ; 127: 102698, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37516393

RESUMO

An IncC or IncA plasmid is needed to enable transfer of SGI1 type integrative mobilisable elements but an IncC plasmid does not stably co-exist with SGI1. However, the plasmid is stably maintained with SGI1-K, a natural SGI1 deletion variant that lacks the sgaDC genes (S007 and S006) and the upstream open reading frame (S008) found in the SGI1 backbone. Here, the effect of the sgaDC genes and S008 on the stability of an IncC plasmid in an Escherichia coli strain with or without SGI1-K was examined. Co-transcription of the S008 open reading frame with the downstream sgaDC genes was established. When a strain containing SGI1-K complemented with a pK18 plasmid that included S008-sgaDC or sgaDC expressed from the constitutive pUC promoter was grown without antibiotic selection, the resident IncC plasmid was rapidly lost but loss was slower when S008 was present. In contrast, SGI1-K and the S008-sgaDC or sgaDC plasmid were quite stably maintained for >100 generations. However, the high copy number plasmids carrying the SGI1-derived S008-sgaDC or sgaDC genes constitutively expressed could not be introduced into an E. coli strain carrying the IncC plasmid but without SGI1-K. Using equivalent plasmids with S008-sgaDC or sgaDC genes controlled by an arabinose-inducible promoter, under inducing conditions the IncC plasmid was stable but the plasmid containing the SGI1-derived genes was rapidly lost. This unexpected observation indicates that there are multiple interactions between the IncC plasmid and SGI1 in which the transcriptional activator genes sgaDC play a role. These interactions will require further investigation.


Assuntos
Escherichia coli , Ilhas Genômicas , Plasmídeos/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Óperon , Farmacorresistência Bacteriana Múltipla/genética
5.
Plasmid ; 128: 102707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37678515

RESUMO

The complete genome of RBH2, a sporadic, carbapenem resistant ST111 Acinetobacter baumannii isolate from Brisbane, Australia was determined and analysed. RBH2 is extensively resistant and the chromosome includes two transposons carrying antibiotic resistance genes, AbaR4 (oxa23 in Tn2006) and Tn7::Tn2006 (dfrA1, sat2, aadA1, oxa23). The chromosome also includes two copies of Tn6175, a transposon carrying putative copper resistance genes, and 1-17 copies of six different insertion sequences. RBH2 has six plasmids ranging in size from 6 kb - 141 kb, four carrying antibiotic resistance genes. Plasmids pRBH2-1 (aadB) and pRBH2-2 (aphA6 in TnaphA6) were found to be essentially identical to known plasmids pRAY*-v1 and pS21-1, respectively. The largest plasmids, pRBH2-5 (oxa23 in AbaR4) and pRBH2-6 (oxa23 in AbaR4::ISAba11 and sul2, tet(B), strA and strB in Tn6172) have known transfer-proficient relatives. pRBH2-5, an RP-T1 (RepAci6) plasmid, also carries a different putative copper resistance transposon related to Tn6177 found in pS21-2. The backbone of pRBH2-5 is related to those of previously described RepAci6 plasmids pAb-G7-2 and pA85-3 but has some distinctive features. Three different RepAci6 backbone types were distinguished, Type 1 (pAb-G7-2), Type 2 (pA85-3) and Type 3 (pRBH2-5 and pS21-2). pRBH2-6 is closely related to pAB3 and their backbones differ by only 5 SNPs. Plasmids pRBH2-3 and pRBH2-4 do not carry antibiotic resistance genes. pRBH2-3 does not include an identifiable rep gene and is a novel plasmid type. pRBH2-4 is of the R3-T3 type and includes segments of the larger pABTJ2 that heads this group. Other ST111 genomes carry different plasmids.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Plasmídeos/genética , Elementos de DNA Transponíveis/genética , Acinetobacter baumannii/genética , Cobre , Infecções por Acinetobacter/genética , Análise de Sequência de DNA
6.
Plasmid ; 125: 102668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36481310

RESUMO

The pseudo-compound transposon Tn4352B is unusual in that the translocatable unit (TU) consisting of one of the bounding IS26 copies and the central portion containing the aphA1a gene has been found to be readily lost in the Escherichia coli strains used as host. Rapid loss required the presence of an additional 2 G residues adjacent to the internal end of one of the IS26 that flank the central portion and an active Tnp26 transposase. However, Tn4352B was found to be stable in wild-type Klebsiella pneumoniae strains. Though it was concluded that the difference may be due to the species background, the E. coli strains used were recombination-deficient. Here, we have further investigated the requirements for TU loss in E. coli and found that Tn4352B was stable in recombination-proficient strains. Among several recombination-deficient strains examined, rapid loss occurred only in strains that carry the recA1 allele but not in strains carrying different recA alleles, recA13 and a novel recA allele identified here, that also render the strain deficient in homologous recombination. Hence, it appears that a specific property of the RecA1 protein underlies the observed TU loss from Tn4352B.


Assuntos
Escherichia coli , Plasmídeos/genética , Escherichia coli/genética , Alelos
7.
J Biol Chem ; 297(4): 101165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487761

RESUMO

The bacterial insertion sequence (IS) IS26 mobilizes and disseminates antibiotic resistance genes. It differs from bacterial IS that have been studied to date as it exclusively forms cointegrates via either a copy-in (replicative) or a recently discovered targeted conservative mode. To investigate how the Tnp26 transposase recognizes the 14-bp terminal inverted repeats (TIRs) that bound the IS, amino acids in two domains in the N-terminal (amino acids M1-P56) region were replaced. These changes substantially reduced cointegration in both modes. Tnp26 was purified as a maltose-binding fusion protein and shown to bind specifically to dsDNA fragments that included an IS26 TIR. However, Tnp26 with an R49A or a W50A substitution in helix 3 of a predicted trihelical helix-turn-helix domain (amino acids I13-R53) or an F4A or F9A substitution replacing the conserved amino acids in a unique disordered N-terminal domain (amino acids M1-D12) did not bind. The N-terminal M1-P56 fragment also bound to the TIR but only at substantially higher concentrations, indicating that other parts of Tnp26 enhance the binding affinity. The binding site was confined to the internal part of the TIR, and a G to T nucleotide substitution in the TGT at positions 6 to 8 of the TIR that is conserved in most IS26 family members abolished binding of both Tnp26 (M1-M234) and Tnp26 M1-P56 fragment. These findings indicate that the helix-turn-helix and disordered domains of Tnp26 play a role in Tnp26-TIR complex formation. Both domains are conserved in all members of the IS26 family.


Assuntos
Elementos de DNA Transponíveis , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Sequências Repetidas Terminais , Transposases/química , Substituição de Aminoácidos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Transposases/genética , Transposases/metabolismo
8.
Antimicrob Agents Chemother ; 66(1): e0180721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662195

RESUMO

To enhance the utility of the genetically diverse panel of Acinetobacter baumannii isolates reported recently by Galac and coworkers (M. R. Galac, E. Snesrud, F. Lebreton, J. Stam, et al., Antimicrob Agents Chemother 64:e00840-20, 2020, https://doi.org/10.1128/AAC.00840-20) and to identify the novel KL and OCL, all of the gene clusters that direct the biosynthesis of capsular polysaccharide and of the outer core of lipooligosaccharide, respectively, were reexamined. The nine KL and one OCL previously recorded as novel were identified, and nine further novel KL and two OCL were found.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Família Multigênica
9.
J Antimicrob Chemother ; 77(4): 930-933, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35040980

RESUMO

OBJECTIVES: To identify the origins of resistance in a sporadic extensively resistant Acinetobacter baumannii isolate. METHODS: The complete genome of RCH52 was determined by combining available Illumina short reads with MinION (Oxford Nanopore) long reads using Unicycler. Bioinformatic searches were used to identify features of interest. RESULTS: The complete genome of RCH52 revealed an unusual chromosomal region containing all of the antibiotic resistance genes, except tet39, which is in a plasmid. A 129 585 bp segment was bounded by inversely oriented copies of ISAba1 and included two groups of resistance genes separated by the large segment of the backbone of type 1 IncC plasmids that lies between the ARI-A and ARI-B resistance islands but does not include the replication region. The ISAba1-bounded segment was located in a novel integrative element that had integrated into the chromosomal thyA gene but provided a replacement thyA gene. Several resistance genes are derived from either the ARI-A or the ARI-B resistance islands found in IncC plasmids that have been brought together by an IS26-mediated deletion of the original plasmid. This non-replicating circular molecule (or translocatable unit) has been incorporated into a smaller ISAba1-bounded unit that includes oxa23 in Tn2008B via homologous recombination between sul2-CR2-floR segments found in both. CONCLUSIONS: The plasmids shared by most Gram-negative pathogens, including the broad host range IncC plasmids, have not been detected in Acinetobacter species. However, it seems likely that they can conjugate into members of this genus and contribute pre-existing clusters of antibiotic resistance genes.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Análise de Sequência de DNA
10.
J Antimicrob Chemother ; 77(7): 1851-1855, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35403193

RESUMO

OBJECTIVES: To examine the causes of antibiotic resistance in the extensively resistant global clone 1 (GC1) Acinetobacter baumannii isolate MRSN 56 recovered at a US military treatment facility. METHODS: MRSN 56 was sequenced using MinION (Oxford Nanopore) and the reads combined with available Illumina MiSeq data using Unicycler. Acquired resistance genes were identified using ABRicate and their environment examined. ISAba1 and ISAba125 copies were located. RESULTS: MRSN 56 is ST1IP:ST231Ox:KL1:OCL1 and the complete genome includes four small plasmids, none of which carry resistance genes. The acquired resistance genes were found at four locations in the chromosome in addition to AbaR28 (aphA1, aacC1, aadA1, sul1) in comM. Tn2006 (oxa23, carbapenem resistance) was both in AbaR4 and alone elsewhere. Two copies of Tn7 (dfrA1, sat, aadA1) were identified. One was associated with a 22 852 bp adjacent segment [tetA(B), sul2] derived from the AbGRI1 island, and this novel configuration was designated Tn7+. Tn7+ was incorporated in the position preferred by Tn7, downstream of glmS, by transposition using a sequence in AbGRI1 resembling the Tn7 terminal inverted repeats. Tn7 was found at a secondary site. Fluoroquinolone resistance appears to involve a mutation in gyrA combined with inactivation by ISAba1 of the marR gene in the mar operon and constitutive expression of marA from the promoter internal to ISAba1. CONCLUSIONS: MRSN 56 represents a new sublineage of GC1 lineage 1 with novel features that had not been detected previously. The involvement of the mar operon in fluoroquinolone resistance has not been noted previously.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/genética , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/farmacologia , Humanos
11.
Plasmid ; 123-124: 102654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36372255

RESUMO

Though IncC and IncA plasmids are compatible, they exert high level exclusion on one another. Here, the question of whether the presence of an SGI1 family element in the donor can overcome the exclusion of an IncC plasmid exerted by an IncC or IncA plasmid in the recipient was investigated. The transfer of the integrative mobilizable element SGI1 and its many variant forms into a new host is dependent on transfer machinery supplied by IncC or IncA plasmids. SGI1 elements include the determinants of a mobilization system and three genes that encode homologues of transfer proteins including TraG. Exclusion of a complete IncC plasmid by a complete IncA or IncC plasmid in the recipient was not ameliorated by an SGI1 element in the donor. However, transfer of the SGI was unaffected indicating that a functional mating apparatus was formed. The presence of only the plasmid-derived eexC or eexA gene in the recipient exerted high level exclusion on an incoming IncC plasmid and this was overcome by an SGI1 variant in the donor. Hence, the SGI affects only entry exclusion and additional plasmid features must influence other routes to plasmid exclusion.


Assuntos
Ilhas Genômicas , Plasmídeos/genética
12.
Plasmid ; 121: 102628, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35288116

RESUMO

Acinetobacter baumannii RepAci1-RepAci10 plasmids pA388 from a global clone 1 (GC1) isolate from Greece, and pACICU1 and variant pACICU1b from an Italian GC2 isolate were found to share a common ancestor. The ancestor formed via recombination between pdif sites in the widely-distributed RepAci1 plasmid pA1-1 and in a RepAci10 plasmid carrying the oxa58 carbapenem-resistance gene in a dif module. Each plasmid includes copies of IS26 and multiple dif modules surrounded by 28 bp pdif sites resembling the chromosomal dif site, including one carrying the oxa58 gene. Plasmid sequences were compared to identify factors driving their evolution and divergence. IS26-mediated events, recombination between pdif sites and homologous recombination have all contributed. A translocatable unit that includes oxa58, generated by an IS26-mediated adjacent deletion, had been re-inserted by IS26 adjacent to an IS26 in pACICU1b to create the oxa58 gene duplication previously found in pACICU1. The oxa58 duplication has been lost from pACICU1b and the Tn6020 variant carrying the aphA1 (kanamycin, neomycin resistance) gene in pA388 has been lost from pACICU1/1b via recombination between directly-oriented IS26 copies. Two dif modules located between directly-oriented pdif sites in pA388 have been lost from pACICU1/1b and the product of this and other deletion events as well as inversion of dif modules located between inversely-oriented pdif sites were detected experimentally in pA388 DNA by PCR. Also, the new junctions were detected in a minority of reads in pA388 long-read sequence data. Inversion and deletion were only detected when the spacers in the pdif sites were identical and equivalent events involving mismatched spacers were not detected.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias , Plasmídeos/genética , beta-Lactamases/genética
13.
J Antimicrob Chemother ; 76(11): 2748-2756, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34180526

RESUMO

To track the spread of antibiotic resistance genes, accurate identification of individual genes is essential. Acquired trimethoprim resistance genes encoding trimethoprim-insensitive homologues of the sensitive dihydrofolate reductases encoded by the folA genes of bacteria are increasingly found in genome sequences. However, naming and numbering in publicly available records (journal publications or entries in the GenBank non-redundant DNA database) has not always been unambiguous. In addition, the nomenclature has evolved over time. Here, the changes in nomenclature and the most commonly encountered problems and pitfalls affecting dfrA gene identification arising from historically incorrect or inaccurate numbering are explained. The complete set of dfrA genes/DfrA proteins found in Gram-negative bacteria for which readily searchable sequence information is currently available has been compiled using less than 98% identity for both the gene and the derived protein sequence as the criteria for assignment of a new number. In most cases, trimethoprim resistance has been demonstrated. The gene context, predominantly in a gene cassette or near the ori end of CR1 or CR2, is also covered. The RefSeq database that underpins the programs used to automatically identify resistance genes in genome data sets has been curated to assign all sequences listed to the correct number. This led to the assignment of corrected or new gene numbers to several mis-assigned sequences. The unique numbers assigned for the dfrA/DfrA set are now listed in the RefSeq database, which we propose provides a way forward that should end future duplication of numbers and the confusion that causes.


Assuntos
Resistência a Trimetoprima , Trimetoprima , Antibacterianos/farmacologia , Bactérias Gram-Negativas/genética , Tetra-Hidrofolato Desidrogenase/genética , Trimetoprima/farmacologia , Resistência a Trimetoprima/genética
14.
J Antimicrob Chemother ; 76(6): 1428-1432, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33686401

RESUMO

BACKGROUND: IS26 plays a major role in the dissemination of antibiotic resistance determinants in Gram-negative bacteria. OBJECTIVES: To determine whether insertion sequence IS26 is able to move alone (simple transposition) or if it exclusively forms cointegrates. METHODS: A two-step PCR using outward-facing primers was used to search for circular IS26 molecules. Gibson assembly was used to clone a synthetic IS26 containing a catA1 chloramphenicol resistance gene downstream of the tnp26 transposase gene into pUC19. IS activity in a recA-Escherichia coli containing the non-conjugative pUC19-derived IS26::catA1 construct and the conjugative plasmid R388 was detected using a standard mating-out assay. Transconjugants were screened for resistance. RESULTS: Circular IS26 molecules that would form with a copy-out route were not detected by PCR. The synthetic IS26::catA1 construct formed CmRTpR transconjugants (where CmR and TpR stand for chloramphenicol resistant and trimethoprim resistant, respectively), representing an R388 derivative carrying the catA1 gene at a frequency of 5.6 × 10-7 CmRTpR transconjugants per TpR transconjugant, which is comparable to the copy-in activity of the unaltered IS26. To test for simple transposition of IS26::catA1 (without the plasmid backbone), 1200 CmRTpR colonies were screened and all were resistant to ampicillin, indicating that the pUC19 backbone was present. Hence, IS26::catA1 had only formed cointegrates. CONCLUSIONS: IS26 is unable to move alone and cointegrates are the exclusive end products of the reactions mediated by the IS26 transposase Tnp26. Consequently, when describing the formation of complex resistance regions, simple 'transposition' of a single IS26 should not be invoked.


Assuntos
Elementos de DNA Transponíveis , Transposases , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Plasmídeos/genética , Transposases/genética
15.
J Antimicrob Chemother ; 76(4): 893-900, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33452522

RESUMO

OBJECTIVES: To understand the acquisition of resistance genes by a non-GC1, non-GC2 Acinetobacter baumannii strain responsible for a 4 year outbreak at a Sydney hospital. METHODS: Representative isolates were screened for resistance to antibiotics. Three were subjected to WGS using Illumina HiSeq. One genome was completed with MinION long reads. Resistance regions were compared with known sequences using bioinformatics. RESULTS: Isolates were resistant to third-generation cephalosporins, gentamicin and tobramycin, sulfamethoxazole and erythromycin. Sequenced isolates were ST49 (Institut Pasteur scheme) and ST128 (Oxford scheme) and carried KL11 at the capsule locus and OCL8 at the lipooligosaccharide outer core locus. The complete genome of isolate J9 revealed that the resistance genes were all in plasmids; pRAY* contained aadB, and a large plasmid, pJ9-3, contained sul2 and floR genes and a dif module containing the mph(E)-msr(E) macrolide resistance genes. Transposon Tn6168, consisting of a second copy of the chromosomal ampC gene region flanked by ISAba1s, confers resistance to third-generation cephalosporins. Tn6168 is located inside the mph(E)-msr(E) dif module. pJ9-3 includes a set of four dif modules and the orientation of the pdif sites, XerC-XerD or XerD-XerC, alternates. A large transposon, Tn6175, containing tniCABDE transposition genes and genes annotated as being involved in heavy metal metabolism, uptake or export was found in the comM gene. Other ST49:ST128:KL11:OCL8 genomes found in the GenBank WGS database carried Tn6175 but neither of the plasmids carrying the resistance genes. CONCLUSIONS: An early carbapenem-susceptible A. baumannii outbreak recorded in Australia was caused by an unusual clone that had acquired plasmids carrying antibiotic resistance genes.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Austrália/epidemiologia , Surtos de Doenças , Farmacorresistência Bacteriana , Hospitais , Humanos , Macrolídeos , Plasmídeos/genética , Análise de Sequência de DNA
16.
Plasmid ; 114: 102561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33485833

RESUMO

The sequence of a conjugative plasmid, pSRC22-2, found in a multiply antibiotic resistant Salmonella enterica serovar Ohio isolate SRC22 originally cultured from swine in 1999, was determined. Plasmid pSRC22-2 has a copy number of approximately 40 and transfers tetracycline resistance at very high frequency. It was typed as IncX1 using the three typing schemes proposed for X-type plasmids, which utilize the replication region, iteron region and taxC conjugation gene and pSRC22-2 belongs to the X1α subgroup. The plasmid backbone, derived by removing mobile elements, is shared with pOLA52, which was the first fully sequenced IncX1 plasmid, and five other X1α plasmids. The pSRC22-2 backbone is interrupted by a complete copy of an IS903 isoform, partial copies of IS1 and IS903 on either side of a 5930 bp IS26-bounded pseudo-compound transposon (PCT), and a novel 256 bp miniature inverted repeat transposable element (MITE). The MITE belongs to the Tn3 family and was named MITESen1. The PCT, which carries a tet(C) tetracycline resistance determinant, is bounded by copies of a novel IS26 variant, IS26-v4, and was designated PTn6184. Comparison of PTn6184 with other tet(C)-carrying PCTs revealed that it can be derived from the largest, PTntet(C), via a two-step process that re-orders the central fragment and involves both an IS26-mediated event and homologous recombination. IS26-v4, which encodes a variant transposase, Tnp26 G184D, has appeared in only 46 entries in the GenBank non-redundant database.


Assuntos
Salmonella enterica , Animais , Elementos de DNA Transponíveis , Ohio , Plasmídeos/genética , Salmonella enterica/genética , Sorogrupo , Suínos
17.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073255

RESUMO

Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-l-talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.


Assuntos
Acinetobacter baumannii , Desoxiaçúcares , Hexoses , Polissacarídeos Bacterianos , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxiaçúcares/química , Desoxiaçúcares/genética , Desoxiaçúcares/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hexoses/química , Hexoses/genética , Hexoses/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Especificidade da Espécie
18.
Plasmid ; 111: 102530, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32871211

RESUMO

Antibiotic resistance genes are often found in structures bounded by copies of IS26, IS257/IS431 or IS1216 that resemble compound (or composite) transposons. However, because of the mechanisms used by IS26 family members, namely that they form cointegrates but cannot resolve them, none of these structures can move together as a coherent single unit. Apparent transposition of these structures is possible via a 2-step process but only if the IS are in direct orientation. An intermolecular reaction catalysed by the IS-encoded transposase and an intramolecular homologous recombination step can occur in either order. In one route, one of the IS bounding the structure forms a cointegrate between the DNA molecule carrying it and a target molecule. Cointegrates formed by either copy-in or targeted conservative routes contain three directly-oriented IS copies and can be resolved by homologous recombination between specific pairs of IS, with one pair leading to apparent transposition of the whole structure. In the other route, homologous recombination first forms a circular intermediate, a translocatable unit or TU, which is incorporated by the transposase either at a random site or adjacent to another IS copy in a target molecule. We therefore conclude that the transposon-like structures are not compound (or composite) transposons and the nomenclature for them should be revised. We propose that the term "pseudo compound transposon" (PCT), first coined in 1989, should be used to describe those structures where the IS are in direct orientation. Structures with the IS in opposite orientation should not be named as transposons.


Assuntos
Bactérias/genética , Elementos de DNA Transponíveis , Genes Bacterianos , Família Multigênica , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Recombinação Homóloga , Recombinação Genética
19.
Plasmid ; 112: 102541, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979461

RESUMO

A large plasmid, pCERC14, found in an antibiotic resistant commensal Escherichia coli isolate recovered from a healthy adult was sequenced. pCERC14 was 162,926 bp and carried FII-18 and FIB-1 replicons and an F-like transfer region as well as several virulence determinants, some of which are involved in the uptake of iron which would be advantageous for the commensal lifestyle. The plasmid backbone is interrupted in 11 places by complete IS (IS1 (4 copies), IS2 (2), IS629 (2) and single IS100, IS186, ISEc33) and in three places by partial IS copies. The antibiotic resistance genes were found in two IS26-bounded pseudo-compound transposons (PCT). One contained a remnant of a class 1 integron that includes a dfrA5 gene cassette and the sul1 gene conferring resistance to trimethoprim and sulphonamides, respectively. The second, named PTntet(C)-var, contained a 4828 bp DNA segment that includes the tet(C) tetracycline resistance determinant. As tet(C) is relatively rare in E. coli and other Gram-negative bacterial isolates, the structure and evolution of tet(C)-containing PCT in available sequences was examined. The largest identified was PTntet(C), a close relative of PTntet(C)-var, and a potential progenitor for these PCT. Most PCT shared one internal boundary with PTntet(C) but the length of the central tet(C)-containing segment was shorter due to IS26-mediated deletions. The most abundant variant form, previously named Tn6309, was widely distributed and, in a derivative of it, most of the tetA(C) gene has been replaced by the tetA(A) gene presumably by homologous recombination.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Integrons , Plasmídeos/genética , Resistência a Tetraciclina , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Recombinação Homóloga , Humanos , Tetraciclina/farmacologia , Virulência/genética
20.
Plasmid ; 107: 102453, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705941

RESUMO

Several groups of integrative mobilizable elements (IMEs) that harbour a class 1 integron carrying antibiotic resistance genes have been found at the 3'-end of the chromosomal trmE gene. Here, a new IME, designated SGI0, was found in trmE in the sequenced and assembled genome of a French clinical, multiply antibiotic resistant Proteus mirabilis strain, Pm1LENAR. SGI0 shares the same gene content as the backbones of SGI1 and SGI2 (overall 97.6% and 97.7% nucleotide identity, respectively) but it lacks a class 1 integron. However, SGI0 is a mosaic made up of segments with >98.5% identity to SGI1 and SGI2 interspersed with segments sharing 74-95% identity indicating that further diverged backbone types exist and that recombination between them is occurring. The structure of SGI1-V, here re-named SGI-V, which lacks two SGI1 (S023 and S024) backbone genes and includes a group of additional genes in the backbone, was re-examined. In regions shared with SGI1, the backbones shared 97.3% overall identity with the differences distributed in patches with various levels of identity. The class 1 integron is also in a slightly different position with the target site duplication AAATT instead of ACTTG for SGI1 and variants, indicating that it was acquired independently. The Pm1LENAR resistance genes are in the chromosome, in Tn7 and an ISEcp1-mobilised segment.


Assuntos
Ilhas Genômicas/genética , Plasmídeos/genética , Proteus mirabilis/genética , Salmonella/genética , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genoma/genética , Humanos , Integrons/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA