Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Cell Proteomics ; 23(2): 100717, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237698

RESUMO

Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.


Assuntos
Proteoma , Trombina , Proteoma/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Glicosilação , Plaquetas/metabolismo , Ativação Plaquetária
2.
J Biol Chem ; 300(7): 107445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844137

RESUMO

Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.


Assuntos
Fibrilinas , Pulmão , Camundongos Knockout , Animais , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Fibrilinas/metabolismo , Fibrilinas/genética , Animais Recém-Nascidos , Glicosilação , Fibrilina-1/metabolismo , Fibrilina-1/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/genética
3.
Nature ; 567(7746): 56-60, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814731

RESUMO

The cytokine interferon-γ (IFNγ) is a central coordinator of innate and adaptive immunity, but its highly pleiotropic actions have diminished its prospects for use as an immunotherapeutic agent. Here, we took a structure-based approach to decoupling IFNγ pleiotropy. We engineered an affinity-enhanced variant of the ligand-binding chain of the IFNγ receptor IFNγR1, which enabled us to determine the crystal structure of the complete hexameric (2:2:2) IFNγ-IFNγR1-IFNγR2 signalling complex at 3.25 Å resolution. The structure reveals the mechanism underlying deficits in IFNγ responsiveness in mycobacterial disease syndrome resulting from a T168N mutation in IFNγR2, which impairs assembly of the full signalling complex. The topology of the hexameric complex offers a blueprint for engineering IFNγ variants to tune IFNγ receptor signalling output. Unexpectedly, we found that several partial IFNγ agonists exhibited biased gene-expression profiles. These biased agonists retained the ability to induce upregulation of major histocompatibility complex class I antigen expression, but exhibited impaired induction of programmed death-ligand 1 expression in a wide range of human cancer cell lines, offering a route to decoupling immunostimulatory and immunosuppressive functions of IFNγ for therapeutic applications.


Assuntos
Desenho de Fármacos , Interferon gama/agonistas , Interferon gama/imunologia , Receptores de Interferon/química , Receptores de Interferon/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Agonismo Parcial de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interferon gama/química , Interferon gama/genética , Ligantes , Modelos Moleculares , Mutação , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Estabilidade Proteica , Receptores de Interferon/genética , Transdução de Sinais , Relação Estrutura-Atividade , Receptor de Interferon gama
4.
J Biol Chem ; 299(12): 105406, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270391

RESUMO

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Assuntos
Fucose , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Nucleotídeos , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Crescimento Epidérmico , Fucose/metabolismo , Células HEK293 , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Neoplasias , Proteínas de Transporte de Nucleotídeos/genética , Trombospondinas/metabolismo , Camundongos Knockout , Receptor Notch1/metabolismo , Transdução de Sinais
5.
Glycobiology ; 34(8)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976017

RESUMO

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Assuntos
Fibroblastos , Fucose , Fucosiltransferases , Receptor Notch1 , Humanos , Fibroblastos/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Receptor Notch1/metabolismo , Receptor Notch1/química , Família de Proteínas EGF/metabolismo
6.
Dev Biol ; 487: 42-56, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429490

RESUMO

In mammalian development, oscillatory activation of Notch signaling is required for segmentation clock function during somitogenesis. Notch activity oscillations are synchronized between neighboring cells in the presomitic mesoderm (PSM) and have a period that matches the rate of somite formation. Normal clock function requires cyclic expression of the Lunatic fringe (LFNG) glycosyltransferase, as well as expression of the inhibitory Notch ligand Delta-like 3 (DLL3). How these factors coordinate Notch activation in the clock is not well understood. Recent evidence suggests that LFNG can act in a signal-sending cell to influence Notch activity in the clock, raising the possibility that in this context, glycosylation of Notch pathway proteins by LFNG may affect ligand activity. Here we dissect the genetic interactions of Lfng and Dll3 specifically in the segmentation clock and observe distinctions in the skeletal and clock phenotypes of mutant embryos showing that paradoxically, loss of Dll3 is associated with strong reductions in Notch activity in the caudal PSM. The patterns of Notch activity in the PSM suggest that the loss of Dll3 is epistatic to the loss of Lfng in the segmentation clock, and we present direct evidence for the modification of several DLL1 and DLL3 EGF-repeats by LFNG. We further demonstrate that DLL3 expression in cells co-expressing DLL1 and NOTCH1 can potentiate a cell's signal-sending activity and that this effect is modulated by LFNG, suggesting a mechanism for coordinated regulation of oscillatory Notch activation in the clock by glycosylation and cis-inhibition.


Assuntos
Receptores Notch , Somitos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Ligantes , Mamíferos/genética , Mesoderma/metabolismo , Receptores Notch/metabolismo , Somitos/metabolismo
7.
J Biol Chem ; 298(12): 102616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265581

RESUMO

NOTCH1 is a transmembrane receptor that initiates a signaling pathway involved in embryonic development of adult tissue homeostasis. The extracellular domain of NOTCH1 is composed largely of epidermal growth factor-like repeats (EGFs), many of which can be O-fucosylated at a specific consensus sequence by protein O-fucosyltransferase 1 (POFUT1). O-fucosylation of NOTCH1 is necessary for its function. The Notch pathway is deregulated in many cancers, and alteration of POFUT1 has been reported in several cancers, but further investigation is needed to assess whether there is deregulation of the Notch pathway associated with mutations that affect O-fucosylation in cancers. Using Biomuta and COSMIC databases, we selected nine NOTCH1 variants that could cause a change in O-fucosylation of key EGFs. Mass spectral glycoproteomic site mapping was used to identify alterations in O-fucosylation of EGFs containing the mutations. Cell-based NOTCH-1 signaling assays, ligand-binding assays, and cellsurface analysis were used to determine the effect of each mutation on Notch activation. Two variants led to a gain of function (GOF), six to a loss of function (LOF), and one had minimal effects. Most GOF and LOF were associated with a change in O-fucosylation. Finally, by comparing our results with known NOTCH1 alterations in cancers from which our mutations originated, we were able to establish a correlation between our results and the known GOF or LOF of NOTCH1 in these cancers. This study shows that point mutations in N1 can lead to alterations in O-fucosylation that deregulate the Notch pathway and be associated with cancer processes.


Assuntos
Neoplasias , Receptor Notch1 , Transdução de Sinais , Humanos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Neoplasias/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Mutação Puntual
8.
J Biol Chem ; 298(7): 102064, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623385

RESUMO

NOTCH1 is a transmembrane receptor that initiates a cell-cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats. Previous in vivo studies showed that each FNG affects naïve T cell development. To examine Fringe modifications of NOTCH1 at a physiological level, we used mass spectral glycoproteomic methods to analyze O-fucose glycans of endogenous NOTCH1 from activated T cells obtained from mice lacking all Fringe enzymes or expressing only a single FNG. While most O-fucose sites were modified at high stoichiometry, only EGF6, EGF16, EGF26, and EGF27 were extended in WT T cells. Additionally, cell-based assays of NOTCH1 lacking fucose at each of those O-fucose sites revealed small but significant effects of LFNG on Notch-Delta binding in the EGF16 and EGF27 mutants. Finally, in activated T cells expressing only LFNG, MFNG, or RFNG alone, the extension of O-fucose with GlcNAc in the same EGF repeats was diminished, consistent with cooperative interactions when all three Fringes were present. The combined data open the door for the analysis of O-glycans on endogenous NOTCH1 derived from different cell types.


Assuntos
Fator de Crescimento Epidérmico , Fucose , Receptor Notch1/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Fucose/metabolismo , Glucosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Polissacarídeos/metabolismo , Receptores Notch/metabolismo , Linfócitos T/metabolismo
9.
J Biol Chem ; 298(6): 102047, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597280

RESUMO

Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by ß3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.


Assuntos
Fucose , Fucosiltransferases , Trombospondina 1 , Animais , Dissacarídeos , Dissulfetos , Retículo Endoplasmático/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Galactosiltransferases , Glucose , Glucosiltransferases/metabolismo , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Trombospondina 1/química
10.
Glycobiology ; 33(8): 661-672, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329502

RESUMO

Previous in vitro studies demonstrated that Fringe glycosylation of the NOTCH1 extracellular domain at O-fucose residues in Epidermal Growth Factor-like Repeats (EGFs) 6 and 8 is a significant contributor to suppression of NOTCH1 activation by JAG1 or enhancement of NOTCH1 activation by DLL1, respectively. In this study, we sought to evaluate the significance of these glycosylation sites in a mammalian model by generating 2 C57BL/6J mouse lines carrying NOTCH1 point mutations, which eliminate O-fucosylation and Fringe activity at EGFs 6 (T232V) or 8 (T311V). We assessed changes to morphology during retinal angiogenesis, a process in which expression of Notch1, Jag1, Dll4, Lfng, Mfng, and Rfng genes coordinate cell-fate decisions to grow vessel networks. In the EGF6 O-fucose mutant (6f/6f) retinas, we observed reduced vessel density and branching, suggesting that this mutant is a Notch1 hypermorph. This finding agrees with prior cell-based studies showing that the 6f mutation increased JAG1 activation of NOTCH1 during co-expression with inhibitory Fringes. Although we predicted that the EGF8 O-fucose mutant (8f/8f) would not complete embryonic development due to the direct involvement of the O-fucose in engaging ligand, the 8f/8f mice were viable and fertile. In the 8f/8f retina, we measured increased vessel density consistent with established Notch1 hypomorphs. Overall, our data support the importance of NOTCH1 O-fucose residues for pathway function and confirms that single O-glycan sites are rich in signaling instructions for mammalian development.


Assuntos
Fucose , Receptor Notch1 , Animais , Camundongos , Fucose/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Epidérmico/química , Retina/metabolismo , Receptores Notch/metabolismo , Mamíferos/metabolismo , Glucosiltransferases
11.
Glycobiology ; 33(4): 301-310, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36721988

RESUMO

Thrombospondin 1 (THBS1) is a secreted extracellular matrix glycoprotein that regulates a variety of cellular and physiological processes. THBS1's diverse functions are attributed to interactions between the modular domains of THBS1 with an array of proteins found in the extracellular matrix. THBS1's three Thrombospondin type 1 repeats (TSRs) are modified with O-linked glucose-fucose disaccharide and C-mannose. It is unknown whether these modifications impact trafficking and/or function of THBS1 in vivo. The O-fucose is added by Protein O-fucosyltransferase 2 (POFUT2) and is sequentially extended to the disaccharide by ß3glucosyltransferase (B3GLCT). The C-mannose is added by one or more of four C-mannosyltransferases. O-fucosylation by POFUT2/B3GLCT in the endoplasmic reticulum has been proposed to play a role in quality control by locking TSR domains into their three-dimensional fold, allowing for proper secretion of many O-fucosylated substrates. Prior studies showed the siRNA knockdown of POFUT2 in HEK293T cells blocked secretion of TSRs 1-3 from THBS1. Here we demonstrated that secretion of THBS1 TSRs 1-3 was not reduced by CRISPR-Cas9-mediated knockout of POFUT2 in HEK293T cells and demonstrated that knockout of Pofut2 or B3glct in mice did not reduce the trafficking of endogenous THBS1 to secretory granules of platelets, a major source of THBS1. Additionally, we demonstrated that all three TSRs from platelet THBS1 were highly C-mannosylated, which has been shown to stabilize TSRs in vitro. Combined, these results suggested that POFUT2 substrates with TSRs that are also modified by C-mannose may be less susceptible to trafficking defects resulting from the loss of the glucose-fucose disaccharide.


Assuntos
Fucosiltransferases , Trombospondina 1 , Animais , Humanos , Camundongos , Fucose/metabolismo , Fucosiltransferases/metabolismo , Glucose , Células HEK293 , Manose , Vesículas Secretórias/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondinas/genética
12.
Cell ; 132(2): 247-58, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243100

RESUMO

Notch signaling is broadly used to regulate cell-fate decisions. We have identified a gene, rumi, with a temperature-sensitive Notch phenotype. At 28 degrees C-30 degrees C, rumi clones exhibit a full-blown loss of Notch signaling in all tissues tested. However, at 18 degrees C only a mild Notch phenotype is evident. In vivo analyses reveal that the target of Rumi is the extracellular domain of Notch. Notch accumulates intracellularly and at the cell membrane of rumi cells but fails to be properly cleaved, despite normal binding to Delta. Rumi is an endoplasmic reticulum-retained protein with a highly conserved CAP10 domain. Our studies show that Rumi is a protein O-glucosyltransferase, capable of adding glucose to serine residues in Notch EGF repeats with the consensus C1-X-S-X-P-C2 sequence. These data indicate that by O-glucosylating Notch in the ER, Rumi regulates its folding and/or trafficking and allows signaling at the cell membrane.


Assuntos
Proteínas de Drosophila , Glicosiltransferases/química , Glicosiltransferases/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Alelos , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cromossomos , Sequência Consenso , Drosophila/química , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Glucose/metabolismo , Glucosiltransferases/deficiência , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Homozigoto , Imuno-Histoquímica , Modelos Biológicos , Mutação , Dobramento de Proteína , Estrutura Terciária de Proteína , Interferência de RNA , Receptores Notch/genética , Serina/metabolismo , Solubilidade , Spodoptera/citologia , Spodoptera/genética , Spodoptera/metabolismo , Temperatura , Transgenes
13.
J Biol Chem ; 297(3): 101055, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411563

RESUMO

Fibrillin-1 (FBN1) is the major component of extracellular matrix microfibrils, which are required for proper development of elastic tissues, including the heart and lungs. Through protein-protein interactions with latent transforming growth factor (TGF) ß-binding protein 1 (LTBP1), microfibrils regulate TGF-ß signaling. Mutations within the 47 epidermal growth factor-like (EGF) repeats of FBN1 cause autosomal dominant disorders including Marfan Syndrome, which is characterized by disrupted TGF-ß signaling. We recently identified two novel protein O-glucosyltransferases, Protein O-glucosyltransferase 2 (POGLUT2) and 3 (POGLUT3), that modify a small fraction of EGF repeats on Notch. Here, using mass spectral analysis, we show that POGLUT2 and POGLUT3 also modify over half of the EGF repeats on FBN1, fibrillin-2 (FBN2), and LTBP1. While most sites are modified by both enzymes, some sites show a preference for either POGLUT2 or POGLUT3. POGLUT2 and POGLUT3 are homologs of POGLUT1, which stabilizes Notch proteins by addition of O-glucose to Notch EGF repeats. Like POGLUT1, POGLUT2 and 3 can discern a folded versus unfolded EGF repeat, suggesting POGLUT2 and 3 are involved in a protein folding pathway. In vitro secretion assays using the N-terminal portion of recombinant FBN1 revealed reduced FBN1 secretion in POGLUT2 knockout, POGLUT3 knockout, and POGLUT2 and 3 double-knockout HEK293T cells compared with wild type. These results illustrate that POGLUT2 and 3 function together to O-glucosylate protein substrates and that these modifications play a role in the secretion of substrate proteins. It will be interesting to see how disease variants in these proteins affect their O-glucosylation.


Assuntos
Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Síndrome de Marfan/metabolismo , Motivos de Aminoácidos , Fibrilina-1/química , Fibrilina-1/genética , Fibrilina-2/química , Fibrilina-2/genética , Glicosilação , Humanos , Proteínas de Ligação a TGF-beta Latente/química , Proteínas de Ligação a TGF-beta Latente/genética , Síndrome de Marfan/enzimologia , Síndrome de Marfan/genética , Sistemas de Translocação de Proteínas , Transdução de Sinais
14.
J Biol Chem ; 297(1): 100843, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058199

RESUMO

Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes) have mutations in the gene encoding ß1,3-glucosyltransferase (B3GLCT). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.


Assuntos
Fenda Labial/enzimologia , Fenda Labial/genética , Córnea/anormalidades , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/genética , Deformidades Congênitas dos Membros/enzimologia , Deformidades Congênitas dos Membros/genética , Mutação/genética , Proteínas ADAMTS/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Córnea/enzimologia , Estabilidade Enzimática , Fucose/metabolismo , Galactosiltransferases/química , Glucose/metabolismo , Glucosiltransferases/química , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Domínios Proteicos , Sequências Repetitivas de Aminoácidos , Homologia Estrutural de Proteína
15.
Biochem Soc Trans ; 50(2): 1003-1012, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35411374

RESUMO

O-glycosylation of Epidermal Growth Factor-like (EGF) repeats plays crucial roles in protein folding, trafficking and function. The Notch extracellular domain has been used as a model to study these mechanisms due to its many O-glycosylated EGF repeats. Three enzymes were previously known to O-glycosylate Notch EGF repeats: Protein O-Glucosyltransferase 1 (POGLUT1), Protein O-Fucosyltransferase 1 (POFUT1), and EGF Domain Specific O-Linked N-Acetylglucosamine Transferase (EOGT). All of these modifications affect Notch activity. Recently, POGLUT2 and POGLUT3 were identified as two novel O-glucosyltransferases that modify a few Notch EGF repeats at sites distinct from those modified by POGLUT1. Comparison of these modification sites revealed a putative consensus sequence which predicted modification of many extracellular matrix proteins including fibrillins (FBNs) and Latent TGFß-binding proteins (LTBPs). Glycoproteomic analysis revealed that approximately half of the 47 EGF repeats in FBN1 and FBN2, and half of the 18 EGF repeats in LTBP1, are modified by POGLUT2 and/or POGLUT3. Cellular assays showed that loss of modifications by POGLUT2 and/or POGLUT3 significantly reduces FBN1 secretion. There is precedent for EGF modifications to affect protein-protein interactions, as has been demonstrated by research of POGLUT1 and POFUT1 modifications on Notch. Here we discuss the identification and characterization of POGLUT2 and POGLUT3 and the ongoing research that continues to elucidate the biological significance of these novel enzymes.


Assuntos
Fator de Crescimento Epidérmico , Glucosiltransferases , Fator de Crescimento Epidérmico/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosilação , Dobramento de Proteína , Receptores Notch/metabolismo
16.
J Biol Chem ; 295(43): 14710-14722, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820046

RESUMO

Notch signaling is a cellular pathway regulating cell-fate determination and adult tissue homeostasis. Little is known about how canonical Notch ligands or Fringe enzymes differentially affect NOTCH1 and NOTCH2. Using cell-based Notch signaling and ligand-binding assays, we evaluated differences in NOTCH1 and NOTCH2 responses to Delta-like (DLL) and Jagged (JAG) family members and the extent to which Fringe enzymes modulate their activity. In the absence of Fringes, DLL4-NOTCH1 activation was more than twice that of DLL4-NOTCH2, whereas all other ligands activated NOTCH2 similarly or slightly more than NOTCH1. However, NOTCH2 showed less sensitivity to the Fringes. Lunatic fringe (LFNG) enhanced NOTCH2 activation by DLL1 and -4, and Manic fringe (MFNG) inhibited NOTCH2 activation by JAG1 and -2. Mass spectral analysis showed that O-fucose occurred at high stoichiometry at most consensus sequences of NOTCH2 and that the Fringe enzymes modified more O-fucose sites of NOTCH2 compared with NOTCH1. Mutagenesis studies showed that LFNG modification of O-fucose on EGF8 and -12 of NOTCH2 was responsible for enhancement of DLL1-NOTCH2 activation, similar to previous reports for NOTCH1. In contrast to NOTCH1, a single O-fucose site mutant that substantially blocked the ability of MFNG to inhibit NOTCH2 activation by JAG1 could not be identified. Interestingly, elimination of the O-fucose site on EGF12 allowed LFNG to inhibit JAG1-NOTCH2 activation, and O-fucosylation on EGF9 was important for trafficking of both NOTCH1 and NOTCH2. Together, these studies provide new insights into the differential regulation of NOTCH1 and NOTCH2 by Notch ligands and Fringe enzymes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Ligantes , Camundongos , Células NIH 3T3
17.
J Biol Chem ; 295(46): 15742-15753, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32913123

RESUMO

ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-ß binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose ß1-3-fucose (GlcFuc) disaccharide by ß1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2-/- but not in B3GLCT-/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.


Assuntos
Proteínas ADAMTS/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Proteínas da Matriz Extracelular/metabolismo , Deformidades Congênitas dos Membros/patologia , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Sequência de Aminoácidos , Animais , Doenças do Desenvolvimento Ósseo/genética , Sistemas CRISPR-Cas/genética , Dissacarídeos/química , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Fucosiltransferases/deficiência , Fucosiltransferases/genética , Edição de Genes , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Células HEK293 , Humanos , Deformidades Congênitas dos Membros/genética , Manose/química , Camundongos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
18.
Glycobiology ; 31(8): 988-1004, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909046

RESUMO

Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the ß3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded thrombospondin type 1 repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9 suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9 and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin ((SSPO) also known as SCO-spondin) TSRs were modified with O-linked glucose-fucose and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant, intracellular levels of SSPO were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.


Assuntos
Hidrocefalia , Deformidades Congênitas dos Membros , Órgão Subcomissural , Animais , Glucosiltransferases/genética , Glicosiltransferases , Transtornos do Crescimento/genética , Hidrocefalia/genética , Deformidades Congênitas dos Membros/genética , Camundongos , Órgão Subcomissural/metabolismo
19.
Glycobiology ; 31(5): 582-592, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33351914

RESUMO

Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties. We previously reported that O-fucosylglycans on Notch are required for Notch receptor-ligand engagement controlling hematopoietic stem cell quiescence and retention in the marrow niche. Here, we generated recombinant fragments of NOTCH1 or NOTCH2 extracellular domain carrying the core ligand-binding regions (EGF11-13) either as unmodified forms or as O-fucosylglycan-modified forms. We found that the addition of O-fucose monosaccharide or the Fringe-extended forms of O-fucose to EGF11-13 showed substantial increases in binding to DLL4. Furthermore, the O-fucose and Fringe-extended NOTCH1 EGF11-13 protein displayed much stronger binding to DLL4 than the NOTCH2 counterpart. When assessed in an in vitro 3D osteoblastic niche model, we showed that the Fringe-extended NOTCH1 EGF11-13 fragment effectively released lodged HPC cells with a higher potency than the NOTCH2 blocking antibody. We concluded that O-fucose and Fringe-modified NOTCH1 EGF11-13 protein can be utilized as effective decoys for stem cell niche localized ligands to potentiate HPC egress and improve HPC collection for hematopoietic cell therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fucose/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Receptor Notch1/genética , Receptor Notch2/genética
20.
Hum Mol Genet ; 28(24): 4053-4066, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600785

RESUMO

Peters plus syndrome (MIM #261540 PTRPLS), characterized by defects in eye development, prominent forehead, hypertelorism, short stature and brachydactyly, is caused by mutations in the ß3-glucosyltransferase (B3GLCT) gene. Protein O-fucosyltransferase 2 (POFUT2) and B3GLCT work sequentially to add an O-linked glucose ß1-3fucose disaccharide to properly folded thrombospondin type 1 repeats (TSRs). Forty-nine proteins are predicted to be modified by POFUT2, and nearly half are members of the ADAMTS superfamily. Previous studies suggested that O-linked fucose is essential for folding and secretion of POFUT2-modified proteins and that B3GLCT-mediated extension to the disaccharide is essential for only a subset of targets. To test this hypothesis and gain insight into the origin of PTRPLS developmental defects, we developed and characterized two mouse B3glct knockout alleles. Using these models, we tested the role of B3GLCT in enabling function of ADAMTS9 and ADAMTS20, two highly conserved targets whose functions are well characterized in mouse development. The mouse B3glct mutants developed craniofacial and skeletal abnormalities comparable to PTRPLS. In addition, we observed highly penetrant hydrocephalus, white spotting and soft tissue syndactyly. We provide strong genetic and biochemical evidence that hydrocephalus and white spotting in B3glct mutants resulted from loss of ADAMTS20, eye abnormalities from partial reduction of ADAMTS9 and cleft palate from loss of ADAMTS20 and partially reduced ADAMTS9 function. Combined, these results provide compelling evidence that ADAMTS9 and ADAMTS20 were differentially sensitive to B3GLCT inactivation and suggest that the developmental defects in PTRPLS result from disruption of a subset of highly sensitive POFUT2/B3GLCT targets such as ADAMTS20.


Assuntos
Proteínas ADAMTS/metabolismo , Proteína ADAMTS9/metabolismo , Fenda Labial/metabolismo , Córnea/anormalidades , Glicosiltransferases/deficiência , Transtornos do Crescimento/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Alelos , Animais , Fenda Labial/enzimologia , Fenda Labial/genética , Córnea/enzimologia , Córnea/metabolismo , Modelos Animais de Doenças , Feminino , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/genética , Deformidades Congênitas dos Membros/enzimologia , Deformidades Congênitas dos Membros/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Organogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA