Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836951

RESUMO

Soil, a significant natural resource, plays a crucial role in supporting various ecosystems and serves as the foundation of Pakistan's economy due to its primary use in agriculture. Hence, timely monitoring of soil type and salinity is essential. However, traditional methods for identifying soil types and detecting salinity are time-consuming, requiring expert intervention and extensive laboratory experiments. The objective of this study is to propose a model that leverages MODIS Terra data to identify soil types and detect soil salinity. To achieve this, 195 soil samples were collected from Lahore, Kot Addu, and Kohat, dating from October 2022 to November 2022. Simultaneously, spectral data of the same regions were obtained to spatially map soil types and salinity of bare land. The spectral reflectance of band values, salinity indices, and vegetation indices were utilized to classify the soil types and predict soil salinity. To perform the classification and regression tasks, the study employed three popular techniques in the research community: Random Forest (RF), Ada Boost (AB), and Gradient Boosting (GB), along with Decision Tree (DT), K-Nearest Neighbor (KNN), and Extra Tree (ET). A 70-30 test train validation split was used for the implementation of these techniques. The efficacy of the multi-class classification models for soil types was evaluated using accuracy, precision, recall, and f1-score. On the other hand, the regression models' performances were evaluated and compared using R-squared (R2), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The results demonstrated that Random Forest outperformed other methods for both predicting soil types (accuracy = 65.38, precision = 0.60, recall = 0.57, and f1-score = 0.57) and predicting salinity (R2 = 0.90, MAE = 0.56, MSE = 0.98, RMSE = 0.97). Finally, the study designed a web portal to enable real-time prediction of soil types and salinity using these models. This web portal can be utilized by farmers and decision-makers to make informed decisions regarding soil, crop cultivation, and agricultural planning.

2.
Sensors (Basel) ; 24(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202871

RESUMO

Nowadays, the demand for healthcare to transform from traditional hospital and disease-centered services to smart healthcare and patient-centered services, including the health management, biomedical diagnosis, and remote monitoring of patients with chronic diseases, is growing tremendously [...].


Assuntos
Atenção à Saúde , Hospitais , Humanos
3.
Sensors (Basel) ; 23(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37571769

RESUMO

This study introduces a monopole 4 × 4 Ultra-Wide-Band (UWB) Multiple-Input Multiple-Output (MIMO) antenna system with a novel structure and outstanding performance. The proposed design has triple-notched characteristics due to CSRR etching and a C-shaped curve. The notching occurs in 4.5 GHz, 5.5 GHz, and 8.8 GHz frequencies in the C-band, WLAN band, and satellite network, respectively. Complementary Split-Ring Resonators (CSRR) are etched at the feed line and ground plane, and a C-shaped curve is used to reduce interference between the ultra-wide band and narrowband. The mutual coupling of CSRR enables the MIMO architecture to achieve high isolation and polarisation diversity. With prototype dimensions of (60.4 × 60.4) mm2, the proposed antenna design is small. The simulated and measured results show good agreement, indicating the effectiveness of the UWB-MIMO antenna for wireless communication and portable systems.

4.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161665

RESUMO

Cloud computing has emerged as the most favorable computing platform for researchers and industry. The load balanced task scheduling has emerged as an important and challenging research problem in the Cloud computing. Swarm intelligence-based meta-heuristic algorithms are considered more suitable for Cloud scheduling and load balancing. The optimization procedure of swarm intelligence-based meta-heuristics consists of two major components that are the local and global search. These algorithms find the best position through the local and global search. To achieve an optimized mapping strategy for tasks to the resources, a balance between local and global search plays an effective role. The inertia weight is an important control attribute to effectively adjust the local and global search process. There are many inertia weight strategies; however, the existing approaches still require fine-tuning to achieve optimum scheduling. The selection of a suitable inertia weight strategy is also an important factor. This paper contributed an adaptive Particle Swarm Optimisation (PSO) based task scheduling approach that reduces the task execution time, and increases throughput and Average Resource Utilization Ratio (ARUR). Moreover, an adaptive inertia weight strategy namely Linearly Descending and Adaptive Inertia Weight (LDAIW) is introduced. The proposed scheduling approach provides a better balance between local and global search leading to an optimized task scheduling. The performance of the proposed approach has been evaluated and compared against five renown PSO based inertia weight strategies concerning makespan and throughput. The experiments are then extended and compared the proposed approach against the other four renowned meta-heuristic scheduling approaches. Analysis of the simulated experimentation reveals that the proposed approach attained up to 10%, 12% and 60% improvement for makespan, throughput and ARUR respectively.


Assuntos
Algoritmos , Computação em Nuvem , Heurística , Indústrias
5.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890783

RESUMO

Artificial intelligence is serving as an impetus in digital health, clinical support, and health informatics for an informed patient's outcome. Previous studies only consider classification accuracies of cardiotocographic (CTG) datasets and disregard computational time, which is a relevant parameter in a clinical environment. This paper proposes a modified deep neural algorithm to classify untapped pathological and suspicious CTG recordings with the desired time complexity. In our newly developed classification algorithm, AlexNet architecture is merged with support vector machines (SVMs) at the fully connected layers to reduce time complexity. We used an open-source UCI (Machine Learning Repository) dataset of cardiotocographic (CTG) recordings. We divided 2126 CTG recordings into 3 classes (Normal, Pathological, and Suspected), including 23 attributes that were dynamically programmed and fed to our algorithm. We employed a deep transfer learning (TL) mechanism to transfer prelearned features to our model. To reduce time complexity, we implemented a strategy wherein layers in the convolutional base were partially trained to leave others in the frozen states. We used an ADAM optimizer for the optimization of hyperparameters. The presented algorithm also outperforms the leading architectures (RCNNs, ResNet, DenseNet, and GoogleNet) with respect to real-time accuracies, sensitivities, and specificities of 99.72%, 96.67%, and 99.6%, respectively, making it a viable candidate for clinical settings after real-time validation.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Algoritmos , Feto , Nível de Saúde , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
6.
Sensors (Basel) ; 22(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146293

RESUMO

Underwater wireless sensor networks (UWSNs) contain sensor nodes that sense the data and then transfer them to the sink node or base station. Sensor nodes are operationalized through limited-power batteries. Therefore, improvement in energy consumption becomes critical in UWSNs. Data forwarding through the nearest sensor node to the sink or base station reduces the network's reliability and stability because it creates a hotspot and drains the energy early. In this paper, we propose the cooperative energy-efficient routing (CEER) protocol to increase the network lifetime and acquire a reliable network. We use the sink mobility scheme to reduce energy consumption by eliminating the hotspot issue. We have divided the area into multiple sections for better deployment and deployed the sink nodes in each area. Sensor nodes generate the data and send it to the sink nodes to reduce energy consumption. We have also used the cooperative technique to achieve reliability in the network. Based on simulation results, the proposed scheme performed better than existing routing protocols in terms of packet delivery ratio (PDR), energy consumption, transmission loss, and end-to-end delay.

7.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081079

RESUMO

Network slicing (NS) is one of the most prominent next-generation wireless cellular technology use cases, promising to unlock the core benefits of 5G network architecture by allowing communication service providers (CSPs) and operators to construct scalable and customized logical networks. This, in turn, enables telcos to reach the full potential of their infrastructure by offering customers tailored networking solutions that meet their specific needs, which is critical in an era where no two businesses have the same requirements. This article presents a commercial overview of NS, as well as the need for a slicing automation and orchestration framework. Furthermore, it will address the current NS project objectives along with the complex functional execution of NS code flow. A summary of activities in important standards development groups and industrial forums relevant to artificial intelligence (AI) and machine learning (ML) is also provided. Finally, we identify various open research problems and potential answers to provide future guidance.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Automação , Comunicação
8.
Sensors (Basel) ; 22(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591282

RESUMO

Recently, there has been an increasing need for new applications and services such as big data, blockchains, vehicle-to-everything (V2X), the Internet of things, 5G, and beyond. Therefore, to maintain quality of service (QoS), accurate network resource planning and forecasting are essential steps for resource allocation. This study proposes a reliable hybrid dynamic bandwidth slice forecasting framework that combines the long short-term memory (LSTM) neural network and local smoothing methods to improve the network forecasting model. Moreover, the proposed framework can dynamically react to all the changes occurring in the data series. Backbone traffic was used to validate the proposed method. As a result, the forecasting accuracy improved significantly with the proposed framework and with minimal data loss from the smoothing process. The results showed that the hybrid moving average LSTM (MLSTM) achieved the most remarkable improvement in the training and testing forecasts, with 28% and 24% for long-term evolution (LTE) time series and with 35% and 32% for the multiprotocol label switching (MPLS) time series, respectively, while robust locally weighted scatter plot smoothing and LSTM (RLWLSTM) achieved the most significant improvement for upstream traffic with 45%; moreover, the dynamic learning framework achieved improvement percentages that can reach up to 100%.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Big Data , Previsões , Memória de Longo Prazo
9.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632035

RESUMO

Biometrics is the term for measuring human characteristics. If the term is divided into two parts, bio means life, and metric means measurement. The measurement of humans through different computational methods is performed to authorize a person. This measurement can be performed via a single biometric or by using a combination of different biometric traits. The combination of multiple biometrics is termed biometric fusion. It provides a reliable and secure authentication of a person at a higher accuracy. It has been introduced in the UIDIA framework in India (AADHAR: Association for Development and Health Action in Rural) and in different nations to figure out which biometric characteristics are suitable enough to authenticate the human identity. Fusion in biometric frameworks, especially FKP (finger-knuckle print) and iris, demonstrated to be a solid multimodal as a secure framework. The proposed approach demonstrates a proficient and strong multimodal biometric framework that utilizes FKP and iris as biometric modalities for authentication, utilizing scale-invariant feature transform (SIFT) and speeded up robust features (SURF). Log Gabor wavelet is utilized to extricate the iris feature set. From the extracted region, features are computed using principal component analysis (PCA). Both biometric modalities, FKP and iris, are combined at the match score level. The matching is performed using a neuro-fuzzy neural network classifier. The execution and accuracy of the proposed framework are tested on the open database Poly-U, CASIA, and an accuracy of 99.68% is achieved. The accuracy is higher compared to a single biometric. The neuro-fuzzy approach is also tested in comparison to other classifiers, and the accuracy is 98%. Therefore, the fusion mechanism implemented using a neuro-fuzzy classifier provides the best accuracy compared to other classifiers. The framework is implemented in MATLAB 7.10.


Assuntos
Dedos , Iris , Biometria , Bases de Dados Factuais , Humanos , Redes Neurais de Computação
10.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746137

RESUMO

In the last decade, the communication of images through the internet has increased. Due to the growing demands for data transfer through images, protection of data and safe communication is very important. For this purpose, many encryption techniques have been designed and developed. New and secured encryption schemes based on chaos theory have introduced methods for secure as well as fast communication. A modified image encryption process is proposed in this work with chaotic maps and orthogonal matrix in Hill cipher. Image encryption involves three phases. In the first phase, a chaotic Henon map is used for permuting the digital image. In the second phase, a Hill cipher is used whose encryption key is generated by an orthogonal matrix which further is produced from the equation of the plane. In the third phase, a sequence is generated by a chaotic tent map which is later XORed. Chaotic maps play an important role in the encryption process. To deal with the issues of fast and highly secured image processing, the prominent properties of non-periodical movement and non-convergence of chaotic theory play an important role. The proposed scheme is resistant to different attacks on the cipher image. Different tests have been applied to evaluate the proposed technique. The results of the tests such as key space analysis, key sensitivity analysis, and information entropy, histogram correlation of the adjacent pixels, number of pixel change rate (NPCR), peak signal to noise ratio (PSNR), and unified average changing intensity (UCAI) showed that our proposed scheme is an efficient encryption technique. The proposed approach is also compared with some state-of-the-art image encryption techniques. In the view of statistical analysis, we claim that our proposed encryption algorithm is secured.

11.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080848

RESUMO

Examination cheating activities like whispering, head movements, hand movements, or hand contact are extensively involved, and the rectitude and worthiness of fair and unbiased examination are prohibited by such cheating activities. The aim of this research is to develop a model to supervise or control unethical activities in real-time examinations. Exam supervision is fallible due to limited human abilities and capacity to handle students in examination centers, and these errors can be reduced with the help of the Automatic Invigilation System. This work presents an automated system for exams invigilation using deep learning approaches i.e., Faster Regional Convolution Neural Network (RCNN). Faster RCNN is an object detection algorithm that is implemented to detect the suspicious activities of students during examinations based on their head movements, and for student identification, MTCNN (Multi-task Cascaded Convolutional Neural Networks) is used for face detection and recognition. The training accuracy of the proposed model is 99.5% and the testing accuracy is 98.5%. The model is fully efficient in detecting and monitoring more than 100 students in one frame during examinations. Different real-time scenarios are considered to evaluate the performance of the Automatic Invigilation System. The proposed invigilation model can be implemented in colleges, universities, and schools to detect and monitor student suspicious activities. Hopefully, through the implementation of the proposed invigilation system, we can prevent and solve the problem of cheating because it is unethical.


Assuntos
Aprendizado Profundo , Algoritmos , Humanos , Redes Neurais de Computação
12.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236694

RESUMO

An efficient feature extraction method for two classes of electroencephalography (EEG) is demonstrated using Common Spatial Patterns (CSP) with optimal spatial filters. However, the effects of artifacts and non-stationary uncertainty are more pronounced when CSP filtering is used. Furthermore, traditional CSP methods lack frequency domain information and require many input channels. Therefore, to overcome this shortcoming, a feature extraction method based on Online Recursive Independent Component Analysis (ORICA)-CSP is proposed. For EEG-based brain-computer interfaces (BCIs), especially online and real-time BCIs, the most widely used classifiers used to be linear discriminant analysis (LDA) and support vector machines (SVM). Previous evaluations clearly show that SVMs generally outperform other classifiers in terms of performance. In this case, Adaptive Support Vector Machine (A-SVM) is used for classification together with the ORICA-CSP method. The results are promising, and the experiments are performed on EEG data of 4 classes' motor images, namely Dataset 2a of BCI Competition IV.


Assuntos
Interfaces Cérebro-Computador , Máquina de Vetores de Suporte , Algoritmos , Artefatos , Análise Discriminante , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
13.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746389

RESUMO

Alzheimer's Disease (AD) is a health apprehension of significant proportions that is negatively impacting the ageing population globally. It is characterized by neuronal loss and the formation of structures such as neurofibrillary tangles and amyloid plaques in the early as well as later stages of the disease. Neuroimaging modalities are routinely used in clinical practice to capture brain alterations associated with AD. On the other hand, deep learning methods are routinely used to recognize patterns in underlying data distributions effectively. This work uses Convolutional Neural Network (CNN) architectures in both 2D and 3D domains to classify the initial stages of AD into AD, Mild Cognitive Impairment (MCI) and Normal Control (NC) classes using the positron emission tomography neuroimaging modality deploying data augmentation in a random zoomed in/out scheme. We used novel concepts such as the blurring before subsampling principle and distant domain transfer learning to build 2D CNN architectures. We performed three binaries, that is, AD/NC, AD/MCI, MCI/NC and one multiclass classification task AD/NC/MCI. The statistical comparison revealed that 3D-CNN architecture performed the best achieving an accuracy of 89.21% on AD/NC, 71.70% on AD/MCI, 62.25% on NC/MCI and 59.73% on AD/NC/MCI classification tasks using a five-fold cross-validation hyperparameter selection approach. Data augmentation helps in achieving superior performance on the multiclass classification task. The obtained results support the application of deep learning models towards early recognition of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos
14.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204293

RESUMO

As localization represents the main backbone of several wireless sensor networks applications, several localization algorithms have been proposed in the literature. There is a growing interest in the multi-hop localization algorithms as they permit the localization of sensor nodes even if they are several hops away from anchor nodes. One of the most famous localization algorithms is the Distance Vector Hop (DV-Hop). Aiming to minimize the large localization error in the original DV-Hop algorithm, we propose an improved DV-Hop algorithm in this paper. The distance between unknown nodes and anchors is estimated using the received signal strength indication (RSSI) and the polynomial approximation. Moreover, the proposed algorithm uses a recursive computation of the localization process to improve the accuracy of position estimation. Experimental results show that the proposed localization technique minimizes the localization error and improves the localization accuracy.

15.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770439

RESUMO

High energy consumption, rising environmental concerns and depleting fossil fuels demand an increase in clean energy production. The enhanced resiliency, efficiency and reliability offered by microgrids with distributed energy resources (DERs) have shown to be a promising alternative to the conventional grid system. Large-sized commercial customers like institutional complexes have put significant efforts to promote sustainability by establishing renewable energy systems at university campuses. This paper proposes the integration of a photovoltaic (PV) system, energy storage system (ESS) and electric vehicles (EV) at a University campus. An optimal energy management system (EMS) is proposed to optimally dispatch the energy from available energy resources. The problem is mapped in a Linear optimization problem and simulations are carried out in MATLAB. Simulation results showed that the proposed EMS ensures the continuous power supply and decreases the energy consumption cost by nearly 45%. The impact of EV as a storage tool is also observed. EVs acting as a source of energy reduced the energy cost by 45.58% and as a load by 19.33%. The impact on the cost for continuous power supply in case of a power outage is also analyzed.

16.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960483

RESUMO

Cloud ERP is a type of enterprise resource planning (ERP) system that runs on the vendor's cloud platform instead of an on-premises network, enabling companies to connect through the Internet. The goal of this study was to rank and prioritise the factors driving cloud ERP adoption by organisations and to identify the critical issues in terms of security, usability, and vendors that impact adoption of cloud ERP systems. The assessment of critical success factors (CSFs) in on-premises ERP adoption and implementation has been well documented; however, no previous research has been carried out on CSFs in cloud ERP adoption. Therefore, the contribution of this research is to provide research and practice with the identification and analysis of 16 CSFs through a systematic literature review, where 73 publications on cloud ERP adoption were assessed from a range of different conferences and journals, using inclusion and exclusion criteria. Drawing from the literature, we found security, usability, and vendors were the top three most widely cited critical issues for the adoption of cloud-based ERP; hence, the second contribution of this study was an integrative model constructed with 12 drivers based on the security, usability, and vendor characteristics that may have greater influence as the top critical issues in the adoption of cloud ERP systems. We also identified critical gaps in current research, such as the inconclusiveness of findings related to security critical issues, usability critical issues, and vendor critical issues, by highlighting the most important drivers influencing those issues in cloud ERP adoption and the lack of discussion on the nature of the criticality of those CSFs. This research will aid in the development of new strategies or the revision of existing strategies and polices aimed at effectively integrating cloud ERP into cloud computing infrastructure. It will also allow cloud ERP suppliers to determine organisations' and business owners' expectations and implement appropriate tactics. A better understanding of the CSFs will narrow the field of failure and assist practitioners and managers in increasing their chances of success.


Assuntos
Computação em Nuvem , Comércio
17.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960535

RESUMO

Wireless sensor networks (WSNs) are one of the fundamental infrastructures for Internet of Things (IoTs) technology. Efficient energy consumption is one of the greatest challenges in WSNs because of its resource-constrained sensor nodes (SNs). Clustering techniques can significantly help resolve this issue and extend the network's lifespan. In clustering, WSN is divided into various clusters, and a cluster head (CH) is selected in each cluster. The selection of appropriate CHs highly influences the clustering technique, and poor cluster structures lead toward the early death of WSNs. In this paper, we propose an energy-efficient clustering and cluster head selection technique for next-generation wireless sensor networks (NG-WSNs). The proposed clustering approach is based on the midpoint technique, considering residual energy and distance among nodes. It distributes the sensors uniformly creating balanced clusters, and uses multihop communication for distant CHs to the base station (BS). We consider a four-layer hierarchical network composed of SNs, CHs, unmanned aerial vehicle (UAV), and BS. The UAV brings the advantage of flexibility and mobility; it shortens the communication range of sensors, which leads to an extended lifetime. Finally, a simulated annealing algorithm is applied for the optimal trajectory of the UAV according to the ground sensor network. The experimental results show that the proposed approach outperforms with respect to energy efficiency and network lifetime when compared with state-of-the-art techniques from recent literature.

18.
Sci Rep ; 14(1): 12650, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825625

RESUMO

The proliferation of smart conurbations entails an efficient system design for managing all the crowds in public places. Multitude controlling procedures are carried out for controlling compact areas where more number of peoples is present at several groups. Therefore for controlling purpose the proposed method aims to design a pictorial representation using Internet of Things (IoT). The process is carried out by taking images and then organizing it using switching techniques in the presence of square boxes where entire populace is identified on real time experimentations. For processing and controlling the occurrence a separate architecture is designed with analytical equivalences where all data set is stored in cloud platform. Further the incorporation of system model is carried out using Switching Based Algorithm (SBA) which adds more number of columns even for high population cases. In order to verify the effectiveness of proposed model five scenarios are considered with performance evaluation metrics for SBA and all the test results provides best optimal results. Moreover the projected model is improved with an average percentage of 83 as compared to existing models.

19.
Curr Med Imaging ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39177127

RESUMO

INTRODUCTION: Deep neural networks (DNNs) have made significant contributions to diagnosing pneumonia from chest X-ray imaging. However, certain aspects of diagnosis and planning can be further enhanced through the implementation of a quantum deep neural network (QDNN). Therefore, we introduced a technique that integrates neural networks with quantum algorithms named the ZFNet-quantum neural network for detecting pneumonia using 5863 X-ray scans with binary cases. METHODS: The hybrid model efficiently pre-processes complex and high-dimensional data by extracting significant features from the ZFNet model. These significant features are given to the quantum circuit algorithm and further embedded into a quantum device. The parameterized quantum circuit algorithm using qubits, superposition theorem, and entanglement phenomena generates 4 features from 4098 features extracted from images via a deep transfer learning model. Moreover, to validate the outcome measures of the proposed technique, we used various PennyLane quantum devices to detect pneumonia and normal control images. By using the Adam optimizer, which exploits an adaptive learning rate that is fixed to 10-6 and six layers of a quantum circuit composed of quantum gates, the proposed model achieves an accuracy of 96.5%, corresponding to 25 epochs. RESULTS: The integrated ZFNet-quantum learning network outperforms the deep transfer learning network in terms of testing accuracy, as the accuracy gained by the convolutional neural network (CNN) is 94%. Therefore, we use a hybrid classical-quantum model to detect pneumonia in which a variational quantum algorithm enhances the outcomes of a ZFNet transfer learning method. CONCLUSION: This approach is an efficient and automated method for detecting pneumonia and could significantly enhance outcome measures related to the speed and accuracy of the network in the clinical and healthcare sectors.

20.
Sci Rep ; 14(1): 15553, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969728

RESUMO

This article proposes a dual mode dual-polarized antenna configuration for IRNSS and fifth generation (5G) applications, operating at a frequency of 3.5 GHz based on characteristic mode analysis (CMA), and aims to provide broadband dual-polarized functionality. The original design of the antenna is a traditional patch antenna, and its dual-polarized features are determined using characteristic mode analysis. The full-wave method is used to stimulate both orthogonal modes using a 50 Ω coaxial input line at 3.5 GHz. In this design, the circular patch has been extended into an elliptical patch through a process of mode separation. The circular patch exhibits resonance at a frequency of 2.5 GHz, whereas the extended elliptical radiator demonstrates two resonance modes at 2.5 GHz and 3.5 GHz. The operational mechanism is elucidated by modal analysis and characteristic angle. This antenna operates on two different frequencies at the 2.5 GHz IRNSS band with horizontal polarization and the 3.5 GHz 5G service with vertical polarization. The maximum gain achieved with these frequency ranges is 5.31 dBi and 4.72 dBi, respectively. A ring resonator is chosen to improve the axial ratio and impedance bandwidth of the suggested prototype. The antenna's ground plane is shaped like a rectangle and features a V-shaped slot in the radiating patch. The antenna's physical footprint is 50 mm × 50 mm × 1.6 mm and an FR4 dielectric substrate serves as its foundation. Through its interaction with a PIN diode, the diode modifies the polarization of the antenna. The antenna functions as a right-handed circular polarization (RHCP), when the diode is operational. The bandwidth from 4.3 to 7.5 GHz is covered. On the other hand, it generates linear polarization (LP) between 4.2 and 5.3 GHz. The experimental antenna is evaluated and examined for its performance characteristics. The simulations are carried out utilizing the CST simulator. A prototype antenna has been manufactured and its performance has been validated against simulated findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA