Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 127(1): 111-122, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32722794

RESUMO

BACKGROUND AND AIMS: The impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively. METHODS: Using a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle. KEY RESULTS: In a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C-1 in the winter annual and 4.9 d °C-1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle. CONCLUSIONS: Seedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.


Assuntos
Arabidopsis , Ecótipo , Europa (Continente) , Germinação , Aquecimento Global , Irlanda , Dormência de Plantas , Estações do Ano , Temperatura
2.
New Phytol ; 225(5): 2035-2047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31359436

RESUMO

Seedling emergence timing is crucial in competitive plant communities and so contributes to species fitness. To understand the mechanistic basis of variation in seedling emergence timing, we exploited the contrasting behaviour of two Arabidopsis thaliana ecotypes: Cape Verde Islands (Cvi) and Burren (Bur-0). We used RNA-Seq analysis of RNA from exhumed seeds and quantitative trait loci (QTL) analyses on a mapping population from crossing the Cvi and Bur-0 ecotypes. We determined genome-wide expression patterns over an annual dormancy cycle in both ecotypes, identifying nine major clusters based on the seasonal timing of gene expression, and variation in behaviour between them. QTL were identified for depth of seed dormancy and seedling emergence timing (SET). Both analyses showed a key role for DOG1 in determining depth of dormancy, but did not support a direct role for DOG1 in generating altered seasonal patterns of seedling emergence. The principle QTL determining SET (SET1: dormancy cycling) is physically close on chromosome 5, but is distinct from DOG1. We show that SET1 and two other SET QTLs each contain a candidate gene (AHG1, ANAC060, PDF1 respectively) closely associated with DOG1 and abscisic acid signalling and suggest a model for the control of SET in the field.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dormência de Plantas , Sementes/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Plântula/genética , Plântula/fisiologia , Fatores de Transcrição
3.
Plant Cell Environ ; 40(8): 1474-1486, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28240777

RESUMO

Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Biológicos/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Relógios Biológicos/efeitos dos fármacos , Simulação por Computador , Escuridão , Ecótipo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Ilhas , Mutação/genética , Dormência de Plantas/efeitos dos fármacos , Estações do Ano , Temperatura , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA