Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318843

RESUMO

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Assuntos
Drosophila , Rubus , Animais , Feminino , Doenças das Plantas , Rubus/microbiologia , Larva , Frutas/microbiologia , Controle de Insetos/métodos
2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930832

RESUMO

Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.


Assuntos
Evolução Molecular , Resistência a Inseticidas/genética , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Produtos Agrícolas , Genoma de Inseto/genética , Masculino
3.
Plant Dis ; 103(6): 1189-1195, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30964416

RESUMO

Brown marmorated stink bug (Halyomorpha halys Stål) is an invasive agricultural pest that causes severe damage to many crops. To determine potential associations between H. halys feeding damage, Fusarium infection, and mycotoxin contamination in field corn, a field survey was conducted in eight counties in Virginia. Results indicated an association between H. halys feeding damage and fumonisin contamination. Subsequent field experiments in Delaware, Maryland, and Virginia examined the ability of H. halys to increase Fusarium verticillioides (Sacc.) Nirenberg infection and fumonisin concentrations in corn. At the milk stage, H. halys (0 or 4 adults) and Fusarium (with or without F. verticillioides inoculum) treatments were applied to bagged ears in a two by two factorial randomized complete block design with 12 replicates. H. halys treatments increased levels of feeding damage (P < 0.0001) and Fusarium infection (P = 0.0380). Interaction between H. halys and Fusarium treatments influenced severity of infection (P = 0.0018) and fumonisin concentrations (P = 0.0360). Results suggest H. halys has the ability to increase both Fusarium infection and fumonisin concentrations in field corn. Further studies are needed to understand mechanisms by which H. halys increases fumonisin and to develop management strategies to mitigate impacts of H. halys on field corn in the region.


Assuntos
Fumonisinas , Fusarium , Hemípteros , Zea mays , Animais , Delaware , Fumonisinas/análise , Fusarium/química , Fusarium/fisiologia , Hemípteros/química , Hemípteros/microbiologia , Maryland , Virginia , Zea mays/química , Zea mays/microbiologia
4.
J Econ Entomol ; 108(2): 683-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470179

RESUMO

Amyelois transitella (Walker) (Lepidoptera: Pyralidae) and Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) are key Lepidoptera pests of almonds in California. Spring insecticide applications (early to mid-May) targeting either insect were not usually recommended because of the potential to disrupt natural enemies when broad-spectrum organophosphates and pyrethroids were applied. The registration of reduced risk compounds such as chlorantraniliprole, methoxyfenozide, and spinetoram, which have a higher margin of safety for natural enemies, makes spring (early to mid-May) application an acceptable control approach. We examined the efficacy of methoxyfenozide, spinetoram, and chlorantraniliprole at three spring application timings including the optimum spring timing for both A. lineatella and A. transitella in California almonds. Our study also examined the possibility of reducing larval populations of A. lineatella and A. transitella simultaneously with a single spring insecticide application. There were no significant differences in the field efficacy of insecticides targeting either A. lineatella or A. transitella, depending on application timing for the three spring timings examined in this study. In most years (2009-2011), all three timings for each compound resulted in significantly less A. transitella and A. lineatella damage when compared with an untreated control, though there was some variation in efficacy between the two species. Early to mid-May applications of the reduced-risk insecticides chlorantraniliprole and spinetoram can be used to simultaneously target A. transitella and A. lineatella with similar results across the potential timings.


Assuntos
Inseticidas/administração & dosagem , Mariposas , Animais , Feminino , Hidrazinas/administração & dosagem , Hormônios Juvenis/administração & dosagem , Macrolídeos/administração & dosagem , Prunus dulcis , Estações do Ano , ortoaminobenzoatos/administração & dosagem
5.
J Econ Entomol ; 106(3): 1365-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865203

RESUMO

ALaboratory and field studies are reported that assess navel orangeworm (Amyelois transitella (Walker)) development and damage on 11 almond varieties that represent both expected and outlying hull split and shell seal A. transitella damage. Twenty neonate larvae were introduced to almonds of three treatments for each variety: scratched (1 mm scratch through the pellicle), shelled (shell removed but pellicle intact), and unshelled (shell intact and exhibiting the tightest shell seal for the variety). Success was evaluated as moth emergence and degree-days (DD) to emergence. In 2010-2011 and 2011-2012, 10 replicate rows containing randomized strands of 20 unshelled, uninfested almonds from each variety were placed in the field for both the fall and spring A. transitella flight. The almonds were returned to the lab before the initiation of the second spring A. transitella flight and categorized by presumed cause of damage (bird damage, A. transitella damage, or both types of damage). Damage, variety, and their interaction significantly impacted A. transitella survival and DDs to emergence in male moths. Female moth DDs to emergence were significantly impacted by damage alone. Damage from birds and A. transitella damage were positively correlated, and A. transitella damage associated with bird damage was more common than A. transitella damage alone. Nonconspecific damage may have a significant impact on A. transitella populations in the field, and bird damage may have repercussions beyond its direct impact on marketable yield.


Assuntos
Mariposas/fisiologia , Prunus/crescimento & desenvolvimento , Animais , California , Comportamento Alimentar , Feminino , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mariposas/crescimento & desenvolvimento , Prunus/genética , Estações do Ano , Caracteres Sexuais
6.
Exp Appl Acarol ; 61(2): 183-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23446744

RESUMO

Pyrethroid insecticides are generally regarded as acutely toxic to predatory phytoseiid mites; however, persistence of hull split spray pyrethroid residues on almond trees and their effects on phytoseiids have not been quantified over time. Hull split, the separation of the almond hull along the suture, exposes the new crop nuts to infestation by Amyelois transitella (Walker) larvae, and is the preferred timing for insecticides applied for their control. Galendromus occidentalis (Nesbitt) is the most important phytoseiid biocontrol agent for web-spinning spider mites in California (USA) almond orchards, and the impact of bifenthrin and λ-cyhalothrin pyrethroid residue on their survival, fertility, and fecundity was determined. The total effects of direct contact with esfenvalerate, permethrin, bifenthrin and λ-cyhalothrin were also evaluated for comparison. The total effects (E) of direct contact treatments of the four pyrethroids ranged from 77.8 % for esfenvalerate to 98.8 % for bifenthrin. Both bifenthrin and λ-cyhalothrin twig residue would be considered harmful (IOBC class 4) following field application at hull split timing. Bifenthrin twig residue would be considered slightly harmful (IOBC class 2) for up to 3.5 months and harmless (IOBC class 1) after 6 months. λ-cyhalothrin residue would be considered moderately harmful (IOBC class 3) for up to 3.5 months following application and harmless (IOBC class 1) after 6 months. Bifenthrin and λ-cyhalothrin twig residue on treated trees significantly reduced G. occidentalis female survival for up to 6 months post-treatment, however total effects (E) classify these residues as harmless (IOBC class 1) after 6 months. Harmful effects of direct and residual exposure following application have implications for the use of these pyrethroids in an integrated mite management program for perennial crops.


Assuntos
Ácaros e Carrapatos/efeitos dos fármacos , Reativadores da Colinesterase/farmacologia , Endopeptidases/farmacologia , Piretrinas/farmacologia , Animais , Feminino , Controle Biológico de Vetores , Resíduos de Praguicidas , Comportamento Predatório/fisiologia
7.
Insects ; 14(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504584

RESUMO

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

8.
Appl Environ Microbiol ; 78(14): 4869-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582060

RESUMO

A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii.


Assuntos
Produtos Agrícolas/parasitologia , Drosophila/microbiologia , Frutas/parasitologia , Leveduras/crescimento & desenvolvimento , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Polimorfismo de Fragmento de Restrição , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/isolamento & purificação , Simbiose , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
9.
Blood ; 116(24): 5403-18, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20833977

RESUMO

We have developed a major histocompatibility complex-defined primate model of graft-versus-host disease (GVHD) and have determined the effect that CD28/CD40-directed costimulation blockade and sirolimus have on this disease. Severe GVHD developed after haploidentical transplantation without prophylaxis, characterized by rapid clinical decline and widespread T-cell infiltration and organ damage. Mechanistic analysis showed activation and possible counter-regulation, with rapid T-cell expansion and accumulation of CD8(+) and CD4(+) granzyme B(+) effector cells and FoxP3(pos)/CD27(high)/CD25(pos)/CD127(low) CD4(+) T cells. CD8(+) cells down-regulated CD127 and BCl-2 and up-regulated Ki-67, consistent with a highly activated, proliferative profile. A cytokine storm also occurred, with GVHD-specific secretion of interleukin-1 receptor antagonist (IL-1Ra), IL-18, and CCL4. Costimulation Blockade and Sirolimus (CoBS) resulted in striking protection against GVHD. At the 30-day primary endpoint, CoBS-treated recipients showed 100% survival compared with no survival in untreated recipients. CoBS treatment resulted in survival, increasing from 11.6 to 62 days (P < .01) with blunting of T-cell expansion and activation. Some CoBS-treated animals did eventually develop GVHD, with both clinical and histopathologic evidence of smoldering disease. The reservoir of CoBS-resistant breakthrough immune activation included secretion of interferon-γ, IL-2, monocyte chemotactic protein-1, and IL-12/IL-23 and proliferation of cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-resistant CD28(-) CD8(+) T cells, suggesting adjuvant treatments targeting this subpopulation will be needed for full disease control.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Terapia de Imunossupressão/métodos , Sirolimo/uso terapêutico , Animais , Proliferação de Células , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Haplótipos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ativação Linfocitária , Macaca mulatta , Sirolimo/imunologia
10.
J Econ Entomol ; 105(4): 1350-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928316

RESUMO

Drosophila suzukii Matsumura (Diptera: Drosophilidae), a recent invasive pest of small and stone fruits, has been detected in more than half of the U.S. states, and in Canada, Mexico, and Europe. Upon discovery, several different trap designs were recommended for monitoring. This study compared the trap designs across seven states/provinces in North America and nine crop types. Between May and November 2011, we compared a clear cup with 10 side holes (clear); a commercial trap with two side holes (commercial); a Rubbermaid container with mesh lid and rain tent (Haviland), and with 10 side holes and no tent (modified Haviland); a red cup with 10 side holes (red); and a white container with mesh lid and rain tent (Van Steenwyk). Although fly catches among traps varied per site, overall, the Haviland trap caught the most D. suzukii, followed by the red, Van Steenwyk, and clear trap. The modified Haviland and commercial trap had low captures. Among five crop types in Oregon, a clear cup with mesh sides (Dreves) also was tested and caught the most flies. Traps with greater entry areas, found in mesh traps, caught more flies than traps with smaller entry areas. In terms of sensitivity and selectivity, traps that caught more flies likewise caught flies earlier, and all traps caught 26-31% D. suzukii out of the total Drosophila captured. Future trap improvements should incorporate more entry points and focus on selective baits to improve efficiency and selectivity with regard to the seasonal behavior of D. suzukii.


Assuntos
Drosophila , Controle de Insetos , Animais , América do Norte
11.
J Econ Entomol ; 115(4): 943-954, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34964883

RESUMO

Caneberries are trellised to facilitate harvest and agrochemical applications as well as to improve crop yield and quality. Trellising can also increase airflow and light penetration within the canopy and affect its microclimate. We compared an experimental trellis that split the canopy into halves to standard I- and V-trellises, measuring Drosophila suzukii (Matsumura) fruit infestation as well as canopy temperature and relative humidity in raspberries at two commercial you-pick diversified farms. To evaluate the combined effects of trellising systems and pruning, we pruned one half of each row in blackberry plantings at two research farms and assessed D. suzukii infestation, canopy microclimate (temperature, relative humidity, and light intensity), fruit quality parameters (interior temperature, total soluble solids, and penetration force), and spray coverage/deposition. Trellis installation costs, labor inputs, and yield were used to further evaluate the trellis systems from an economic perspective. Fruit quality was not affected by trellising or pruning and lower total yield was observed in the experimental trellis treatment on one farm. Although D. suzukii infestation was only affected by trellising and pruning at one site, we observed a relationship between higher temperatures and reduced infestation on nearly all farms. Occasionally, lower relative humidity and high light intensity corresponded with lower infestation. Ultimately, the experimental trellis was less economically efficient than other trellising systems and our ability to successfully manipulate habitat favorability varied in a site-specific manner. Drosophila suzukii management approaches that rely upon unfavorable conditions are likely to be more effective in hot, dry regions.


Assuntos
Drosophila , Rubus , Animais , Ecossistema , Frutas , Controle de Insetos , Microclima
12.
J Econ Entomol ; 115(4): 1046-1053, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35296902

RESUMO

Drosophila suzukii (Matsumura) has spread rapidly, challenging berry and cherry crop production due to its ability to lay eggs into ripening fruit. To prevent infestation by this pest, insecticides are applied during fruit ripening and harvest. We field-tested the Rapid Assessment Protocol for IDentification of resistance in D. suzukii (RAPID) on seventy-eight populations collected across eight U.S. states in 2017 and 2018. Exposure to LC50 rates of malathion, methomyl, spinetoram, spinosad, and zeta-cypermethrin led to average female fly mortality of 25.0% in 2017, and after adjusting concentrations the average was 39.9% in 2018. Using LC99 × 2 discriminating concentrations in 2017 and LC90 × 8 rates in 2018, average female mortalities were 93.3% and 98.5%, respectively, indicating high overall susceptibility. However, using these high concentrations we found 32.0% of assays with survival of some female flies in 2017 and 27.8% in 2018. The adjustment in discriminating dose from 2017 to 2018 also reduced the proportion of assays with <90% survival from 17.6 to 2.9%. Populations with low mortality when exposed to spinosad were identified using this assay, triggering more detailed follow-up bioassays that identified resistant populations collected in California coastal region berry crops. Widespread evaluations of this method and subsequent validation in California, Michigan, and Georgia in 2019-2021 show that it provides a quick and low-cost method to identify populations of D. suzukii that warrant more detailed testing. Our results also provide evidence that important insecticide classes remain effective in most U.S. regions of fruit production.


Assuntos
Inseticidas , Animais , Produtos Agrícolas , Drosophila , Feminino , Frutas , Controle de Insetos/métodos , Inseticidas/farmacologia , Malation/farmacologia , Metomil/farmacologia , Estados Unidos
13.
J Econ Entomol ; 104(3): 965-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21735917

RESUMO

Hull split date, shell seal, and navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), infestation data for 19 varieties of almonds, Prunus dulcis (Mill.) D.A. Webb, were analyzed to determine the relationship of shell seal and hull split date on A. transitella infestation. Data for all varieties were collected from three University of California regional almond variety trials from 2003 to 2005, with a total of 8,550 nuts evaluated. A significant negative relationship was found between percentage of shell seal and percentage of navel orangeworm infestation, with lower percentage of shell seal correlating to higher percentage of infestation. Similarly, hull split date was negatively correlated with percentage of infestation, with later splitting varieties trending toward lower percentage of infestation. Although there are outlying varieties, hull split and shell seal are indeed significant components in varietal differences in almond navel orangeworm infestation. Understanding such factors gives insight into both the predictive value of almond characteristics related to navel orangeworm damage as well as other potential indicators.


Assuntos
Mariposas/fisiologia , Prunus/crescimento & desenvolvimento , Animais , California , Comportamento Alimentar , Variação Genética , Nozes/crescimento & desenvolvimento , Densidade Demográfica
14.
Insects ; 12(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671153

RESUMO

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.

15.
J Econ Entomol ; 114(5): 1950-1974, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516634

RESUMO

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.


Assuntos
Drosophila , Inseticidas , Animais , Frutas , Controle de Insetos
16.
J Econ Entomol ; 113(6): 2820-2831, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33128449

RESUMO

Spray coverage may influence the efficacy of insecticides targeting the invasive vinegar fly Drosophila suzukii (Matsumura), a primary pest of raspberries and blackberries. In commercially managed caneberries, spray coverage is typically lowest in the inner and lower plant canopy, regions that overlap with higher levels of adult D. suzukii activity. To understand how spray coverage of fruit impacts efficacy against D. suzukii, laboratory bioassays were conducted using raspberries. In laboratory bioassays, higher spray coverage did not impact larval infestation rates but did increase adult mortality, indicating that flies can avoid a lethal dose of insecticide when applications do not achieve adequate coverage. We also evaluated how carrier water volume impacts spray coverage patterns throughout the canopy of raspberry and blackberry plants using both airblast and CO2 backpack sprayers. Increasing carrier water volume generally improved spray coverage in the lower plant canopy. However, effects in the upper plant canopy were inconsistent and varied between sprayer types. In addition to carrier water volume, other approaches, including adjusting the pesticide sprayer equipment used and/or sprayer calibration, should also be explored to improve coverage. Growers should evaluate spray coverage in their caneberries to identify and troubleshoot coverage issues. Results from this study indicate that taking the time to optimize this aspect of pesticide application may improve chemical management of D. suzukii and will likely also improve control of other important caneberry pests.


Assuntos
Inseticidas , Rubus , Animais , Drosophila , Fazendas , Frutas , Controle de Insetos
17.
J Econ Entomol ; 113(1): 288-298, 2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-31630205

RESUMO

Vinegar flies (Diptera: Drosophilidae) are well known to be associated with yeasts, which provide important nutrients and emit attractive semiochemicals. Drosophila suzukii (Matsumura) has become a major pest of berries and cherries around the world, requiring intensive management to maintain fruit quality. Although insecticides remain a dominant control approach, disruption of fly-yeast-host interactions remains a promising avenue for reducing the economic impact of this pest. We conducted field and laboratory experiments to explore whether a crop sterilant (peroxyacetic acid and hydrogen peroxide) developed for disease control can affect D. suzukii. In 2 yr of field tests in highbush blueberries, we found significantly lower infestation by D. suzukii in plots treated with the crop sterilant, both alone and in a rotation program with zeta-cypermethrin. When shoots from treated plots were tested in no-choice bioassays, crop sterilant treatments did not affect adult mortality or oviposition, but they reduced infestation. To explore the mechanisms in the laboratory, we found that the crop sterilant did not affect adult mortality, nor oviposition on treated fruit under no-choice settings, but adult flies settled and oviposited less on treated fruit in choice settings. When the crop sterilant was applied to colonies of Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycodaceae) and Issatchenkia terricola (Van der Walt) (Saccharomycetales: Saccharomycetacea) yeasts that are attractive and provide nutrition to D. suzukii, there was a dose-dependent inhibition of their growth. We highlight the potential for microbial management as a component of integrated pest management programs and prioritize research needs to incorporate this approach into control programs.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Animais , Drosophila , Feminino , Frutas , Controle de Insetos , Oviposição
18.
Pest Manag Sci ; 76(1): 55-66, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31207075

RESUMO

BACKGROUND: Fruit growers largely depend on chemical control to reduce populations of the economically damaging invasive fly, Drosophila suzukii (Matsumura). Drosophila suzukii is susceptible to high temperatures and low humidity; therefore, it may be possible to implement cultural control practices that create microclimates unfavorable for its development and survival. In addition to other fruit production benefits, in-row mulches may impede the development of D. suzukii immatures when larvae leave the fruit to pupate in the soil. This study compared the effects of different mulches (black polypropylene fabric weedmats, sawdust, and wood chips) on temperature and relative humidity (RH), and on adult emergence of D. suzukii from larvae in blueberries and pupae, both above and below the ground surface in blueberry plantings (Vaccinium corymbosum L.). RESULTS: Across regions, both lower larval survival and longer periods with high suboptimal temperatures occurred above the ground in comparison to buried below the ground, regardless of mulch type. Fewer D. suzukii adults emerged from larvae on weedmat mulch at one site, but there was no effect of mulch type on temperature, RH, or D. suzukii emergence at most sites. The relationships between temperature, RH, and the emergence of adults from larvae and pupae varied by region. Natural infestation by D. suzukii in blueberries was lower over weedmat compared to wood-based mulches at one site. Greenhouse experiments showed that larvae burrowed to pupate underneath sawdust mulch, but were unable to pupate underneath a weedmat mulch. CONCLUSIONS: Although weedmats may not modify temperatures or RH enough to consistently affect D. suzukii emergence, they can reduce field suitability for D. suzukii by providing a barrier that prevents larvae from reaching favorable pupation microhabitats underground. © 2019 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta) , Animais , Drosophila , Frutas , Controle de Insetos , Larva , Pupa
19.
Sci Rep ; 9(1): 13370, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527678

RESUMO

Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii's ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.


Assuntos
Drosophila/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Larva/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Frutas/crescimento & desenvolvimento , Microbiota , Leveduras/química , Leveduras/metabolismo
20.
Pest Manag Sci ; 75(4): 969-978, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30192045

RESUMO

BACKGROUND: Nearly all corn seed in the US is coated with neonicotinoid insecticides to protect against soil and foliar arthropod pests. Exposure in the soil and the systemic activity in the plant can pose non-target risks. We assessed the community-level effects of clothianidin-treated seed on the diversity and abundance of arthropod communities in a no-till corn agroecosystem over a single growing season. RESULTS: Epigeal and foliage-dwelling communities were disturbed by the clothianidin seed treatment, with significant negative and positive changes in taxa abundances. Clothianidin reduced the abundance of minute pirate bugs by 66.2%, lady beetles by 44.7%, ants by 43.4%, ground beetle adults and larvae by 31.7%, and rove beetles by 44.1% during the early corn growth stages. Herbivores, particularly thrips, were more negatively affected by clothianidin than other trophic groups. In contrast, some groups, such as collembolans and leafhoppers, exhibited significantly higher abundances in the seed treated plots. CONCLUSION: Clothianidin primarily influenced arthropod communities during the 4 weeks following planting, with disruptions to major natural enemy taxa, but communities showed trends toward recovery at the later corn stages. While the insecticide suppressed multiple herbivores, none were economically damaging to corn; thus, the pest suppression benefits of clothianidin observed in this study did not justify the non-target impacts. © 2018 Society of Chemical Industry.


Assuntos
Artrópodes/efeitos dos fármacos , Biodiversidade , Guanidinas , Inseticidas , Neonicotinoides , Sementes , Tiazóis , Zea mays , Animais , Guanidinas/farmacologia , Guanidinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Maryland , Neonicotinoides/farmacologia , Neonicotinoides/toxicidade , Tiazóis/farmacologia , Tiazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA